跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈樹
研究生(外文):Ying-Shu Chen
論文名稱:低損耗梯型中頻表面聲波濾波器之研究
論文名稱(外文):Low Loss Ladder Type IF SAW Filter
指導教授:吳朗
指導教授(外文):Long Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:99
中文關鍵詞:表面聲波梯形濾波器金鍺鎳諧振器
外文關鍵詞:ladder type filterresonatorSAWAuGeNi
相關次數:
  • 被引用被引用:5
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
經由模擬的方法以及實驗結果,成功的在Y360XLiTaO3上面實現了低損耗的梯型濾波器。而在實驗中,為了加強質量加載的效應,以金鍺鎳合金取代了傳統的鋁電極。一般來講,以鋁為電極的話,需要7%波長以上的電極厚度,對200MHz的中心頻率而言,就得需要1.4微米的鋁電極厚度,這在製程上是相當困難的;於是以金鍺鎳合金來取代鋁電極以減少電極厚度。本篇探討了從4.5%波長到11.2%波長的電極厚度,用模擬來求得可能的頻率響應,並且實際用金鍺鎳合金以等重電極來取代鋁電極,製作於Y360XLiTaO3基板上,比較模擬與實際元件的差異性。
當電極厚度增加時,通帶的漣波會變小,中心頻率會降低。當電極厚度大於7%時,濾波器的頻率響應會變的較好。但是,當電極重量持續增加時,除了中心頻率繼續下降外,濾波器的波形也會變差。為了讓濾波器特性的止帶抑制增加,使波形較好,可用增加濾波器階數的方法,由一階、二階到三階,討論濾波器止帶抑制增加的趨勢。因為由表面聲波諧振器接成的梯型濾波器,其在通帶頻率時具有自我匹配的特性,所以不需要額外的匹配電路。最後,經由以上的探討可以知道,用等重的金鍺鎳合金當電極,以及增加濾波器的階數,可以得到好的梯型濾波器響應。
By way of simulation and experiment results, low loss ladder type IF SAW filters realized on Y360X LiTaO3 substrates are presented. To enhance electrode mass loading, Au-Ge-Ni alloy is used instead of traditional Al electrode in the experiment. Normally, thick Al electrode of more than 7% of a wave length is required for ladder-type filters deposited on Y360X LiTaO3 substrates. It corresponds to 1.4μm Al thickness when center frequency is around 200MHz. Forming IDT pattern with such large thickness is difficult. This is why heavy metal, Au-Ge-Ni alloy, is used as electrodes instead of Al. In this thesis, various electrode thickness from 4.5% to 11.2% of a wave length is simulated to estimate the frequency responses, and filters were deposited on Y360X LiTaO3 by using Au-Ge-Ni alloy as electrodes, then the response of simulation and the characteristic of experiment results,were compared.
With electrode thickness increases, passband ripple becomes smaller, center frequency moves toward lower frequency. Filter response is better when the electrode thickness is greater than 7% of a wave length. But when the electrode thickness increase continuously, the center frequency decrease, besides, shape of filter response will be damped because of mass loading. In order to increase the stop-band rejection and improve the performance of filters, the number of stage, from one stage to three stage will be discussed. Because of the frequency response around passband of ladder type SAW filter is self-matching, the devices don’t need external matching network. According to the discussion of above, a good filter is manufactured by using alloy electrode and increasing the number of stage.
第一章 緒論 1
第二章 原理 3
2-1表面波概論 3
2-2壓電理論 4
2-2.1正壓電效應 6
2-2.2逆壓電效應 6
2-2.3壓電理論的數學關係式 7
2-2.4表面波的數學理論 10
2-2.5脈衝響應模型(Impulse response model) 13
2-2.6表面波元件基板 17
2-2.7電極對元件波速之影響 19
2-2.8 SAW元件的介入損失及二次效應 21
第三章 梯型濾波器理論與設計 24
3-1表面聲波諧振器(SAW resonator) 24
3-1.1表面聲波諧振器的基本理論 24
3-1.2表面聲波諧振器的反射閘極 27
3-1.3忽略不連續效應的指叉電極等效電路 29
3-1.4考慮不連續效應的指叉電極等效電路 33
3-1.5表面聲波諧振器的反射閘極等效電路 36
3-1.6多埠連接理論[30] 37
3-2梯型濾波器 39
3-2.1一階梯型SAWF結構 39
3-2.2 高階梯型SAWF 42
3-2.3 電極厚度的影響 44
3-2.4 指叉電極週期與反射閘極週期的影響 45
3-3模擬(simulation) 47
3-3.1 h=1μm模擬 47
3-3.2 h=1.3μm模擬 52
3-3.3 h=1.8μm模擬 56
3-3.4 h=2.4μm模擬 60
3-3.5光罩的設計 64
第四章 實驗方法與步驟 66
4-1 基板清洗 66
4-2 黃光微影製程 66
4-3 電極製作 67
4-3.1 金屬蒸著 68
4-3.2 舉離法(lift-off) 68
4-4 量測方法 69
4-4.1 表面聲波諧振器量測方法 69
4-4.2 梯型SAWF量測方法 70
第五章 實驗結果與討論 73
5-1金鍺鎳合金電極2000Å 73
5-2 金鍺鎳合金電極2600Å 82
5-3 金鍺鎳合金電極3600Å 88
5-4 金鍺鎳合金電極4800Å 94
第六章 結論 96
1.Lord Rayleigh, “On waves propagating along the plane surface of an elastic solid”, Proc. London Math. Soc. Vol.17, pp.4-11, 1885.
2.R. M. White and F. M. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett., Vol.7, pp.314-316, 1965.
3.Special Issue on Acoustic Sensors, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., Vol UFFC-34 NO.2,1987.
4.Ivan D.arramov,and Zdravko G.Georgiev, ”A Surface Acoustic Wave Comb Spectrum Oscillator for Sensor Application”, IEEE Trans. Ultrason.Ferroelec.Freq. Contr.,Vol UFFC-38,NO.3,p.334-336,1991.
5.Chen S. Tsai,” Integrated Acoustooptic Circuits and Applications “,IEEE Trans.Ultrason.Ferroelec. Freq. Contr., Vol UFFC-39, No.5 p.529-554,1992.
6.Osamu Yamazaki, Tsuneo Mitsuyu and Kiyotaka,” ZnO Thin Film SAW Devices” IEEE Trans. Sonic. and Ultrason. Vol. SU-27, No.6,p.369-379,1980.
7.S.J.Martin, S.S.Schwartz, R.L.Gunshor and R.F.Pierret “Surface Acoustic Wave Resonators on a ZnO-on-Si Layered Medium”, J.Appl.Phys.Vol.54,No.2 p.561-569,1983.
8.Herbert Matthews, “Surface wave filter”, John Wiley & Sons. 1977.
9.J. J. Campbell and W. R. Jones, “A method for estimating opitmal crystal cuts and propagation direction for excitation of piezoelectric surface waves”, IEEE Trans. on Sonics and Ultrasonics, Vol.SU-15, pp.209, 1968.
10.C. S. Hartmann, D. T. Bell, Jr. and R. C. Rosenfeld, “Impulse Model Design of Acoustic Surface-Wave Filters”, IEEE Trans. on Microwave Theory and Techniques, MTT-21, no.4, pp.162-175, 1973
11.C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp.79-81, 1997.
12.R. H. Tancrell, “Principles of surface wave filter design”, Surface Wave Filters, John Wiley and Sons, Chapter 3, 1977.
13.C.Dunnrowicz, F. Sandy and T. Parker, “Reflection of Surface Waves from Periodic Discontinuities,” Proc. 1997 IEEE Ultrasonics Symp.,pp.386~390,1976.
14.W.R.Smith,H.M.Gerard,J.H.Collins,T.M.Reeder,and H. J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model”, IEEE Trans. MTT,Vol.MTT-17, pp856~864,Nov. 1969.
15.W.P.Mason, Electromechnical Transducers and Wave Filters, van Nostrand-Reinhold , 2ndEdition, Princeton, New Jersey, pp.201~209, 399~409,1948.
16.G.A Coquin and W.R. Jones, ”Analysis of the excitation and detection of piezoelectric surface waves in quartz by means of surface electrodes,” J. Acoustic. Soc. Amer., Vol. 41,pp.921~939,1967.
17.W. Richard Smith,Henry M. Gerard and William R. Jones, ”Analysis and Design of Dispersive Interdigital Surface-Wave Transducers,”IEEE Trans. on Microwave Theory and Techniques, Vol.MTT-20,No.7,pp.458~471,1972.
18.C. Lardat, C. Maerfeld and P. Tournois, ”Theory and performance of acoustical dispersive surface wave delay lines,”Proc. IEEE, Vol. 59,pp.355~368,1971.
19.M. B Schulz and J. H. Matsinger, “Rayleigh wave electromechanical coupling constants, ”Applied Physics Letters, Vol.20,p367,1972.
20.S. Datta, Surface Acoustic Wave Devices, Prentice-Hall, Englewood Cliffs, p.78,1986.
21.Colin Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press,Inc.,1998.
22.C. B. Saw, Single-phase Unidirectional Transducers for Low-loss Surface Acoustic Wave Devices,Ph. D. Thesis in Electrical Engineering, McMaster University, Hamilton, Ontario L8S 4L7,Canada,267 pages, July 1988.
23.D-P Chen and H.A. Haus, ”Analysis of metal strip SAW gratings and transducers,” IEEE Trans. on Sonics and Ultrasonics, Vol.SU-32,pp.395~408,1985.
24.K. Yamanouchi and M. Takeuchi, “Applications for piezoelectric leaky surface waves, ”Proc. 1990 IEEE Ultrasonics Symp.,pp.11~18,1990.
25.T. Morita, Y. Watanabe, N. Tanaka and Y. Nakazawa, “Wideband low loss double mode SAW filters,” Proc. 1992 IEEE Ultrasonics Symp.,pp.95~104,1992.
26.K. C. Gupta, Ramesh Gang, Rakesh Chadha, Computer-Aided Design of Microwave Circuit.
27.OU Hok Hour,Naoto INOSE and Nobuyoshi Sakamoto,”Improvement of Ladder Type SAW Filter Characteristic,” Proc. 1998 IEEE Ultrasonics Symp,. pp.97~99,1998
28.M. Ueda, O. Kawachi, K. Hashimoto, O. Ikata and Y. Satoh, ”Low Loss Ladder type SAW Filter in The Range of 300 to 400 MHz”Proc. 1994 Ultrasonics Symp. p.144,1994.
29.S. Mineyoshi, O. Kawachi, M. Ueda and Y. Fijiwara, Fujitsu limitied, ”Analysis and Optimal SAW ladder filter design including bonding wire and package imoedance”Proc. 1997 Ultrasonics Symp. pp.175~178,1997.
30.Mei-Hui Chung, “Design and Study of Surface Acoustic Wave Filters”1999 pp.27~38,1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top