跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游雋弘
研究生(外文):Chun-Hung Yu
論文名稱:GHz級薄膜型塊體聲波共振器的研製與特性探討
論文名稱(外文):Fabrication and Characteristic of GHz range Film Type Bulk Acoustic Wave Resonators(FBAR)
指導教授:吳朗
指導教授(外文):Long Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:102
中文關鍵詞:感應式耦合電漿蝕刻薄膜型塊體聲波共振器乾式蝕刻
外文關鍵詞:ICPdry etchfilm bulk acoustic wave resonators
相關次數:
  • 被引用被引用:5
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文使用黃光顯影製程、乾式蝕刻法與反應性射頻磁控濺鍍法來沉積電極與壓電薄膜來製作薄膜型塊體聲波共振器(Film type bulk acoustic wave resonators, FBARs)。本文所製備的薄膜型塊體聲波共振器主要包含五層的多層結構。使用LPCVD沉積兩種振動板的薄膜材料(SiO2與Si3N4)於p-型矽晶圓上,同時也當作蝕刻罩。利用黃光顯影製程在光阻上轉移蝕刻窗口圖形至矽晶圓,再利用感應耦合式電漿蝕刻(ICP)進行乾式蝕刻製程,以完成聲波空腔(acoustic cavity)及振動板(membrane)構造製作。待蝕刻完成後,利用切割機將矽晶圓切出我們所要的晶片大小(1cm2)。接著再利用黃光顯影製程轉移下電極的圖案於晶片上,再濺鍍沉積鋁薄膜作為下電極。待完成下電極的濺鍍沉積之後,再濺鍍沉積高c軸優選取向的氮化鋁作為壓電薄膜,然後進行上電極的黃光製程,最後沉積鋁薄膜作為上電極,如此便完成了四層結構的薄膜型塊體聲波共振器。
本論文使用X光繞射儀(X-Ray Diffraction, XRD)來鑑定薄膜的晶向;並輔以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)來觀察薄膜表面與剖面型態;使用網路分析儀(HP 8753ES)來量測共振器的特性與共振頻率。
研究結果顯示,以SiO2作為振動板,振動板厚度為2000 Å,使用電極區域為3.6 105μm2,下電極厚度約為2000 Å,上電極厚度為1800 Å,而壓電層氮化鋁的厚度為2.7μm所製備的FBAR元件,所量得的共振頻率約為2.855GHz 。可利用調變電極的大小與厚度,以及調變壓電層的厚度,來改變元件的特性。
Abstract
This paper reports on a film type bulk acoustic wave resonator (FBAR) fabricated by lithography, dry etching and RF magnetron sputtering of aluminum nitride (AlN)films. The acoustic cavity is made by inductively coupled plasma (ICP) etched. The bottom and top electrodes are deposited by using RF magnetron sputtering. In this paper, the influence of AlN thickness on the frequency response of thin film bulk acoustic wave resonators (FBARs) with SiO2 and Si3N4 as the support membranes were investigated. The FBAR consists of a piezoelectric aluminum nitride (AlN) thin film and sandwiched between two aluminum thin film electrodes. All lie on thin films SiO2 and Si3N4 as support membranes onto silicon substrates. A range of 0.9μm, 1.8μm, 2.7μm, 3.6μm and 4.5μm AlN thin films thickness were deposited by reactive RF magnetron sputtering. The AlN thin film had a smooth surface and with highly c-axis oriented and well-aligned columnar. The result showed that the thicker AlN films of the resonator increased higher resonant frequency.
The crystallography of the coated films was analyzed by x-ray diffraction (XRD) and by operating the scanning electron microscope (SEM) for the film surface and cross-sectional properties. The fabricated FBAR is measured by network analyzer (HP 8753ES).
FBAR devices which consisted of 2.7μm AlN, 0.2μm bottom electrode, 0.18μm top electrode, and 0.2μm of SiO2 membrane have a resonant frequency of 2.855 GHz in this paper. The experiment also successfully demonstrated that reducing the bottom electrode thickness will increase the resonant frequency, so that it is possible to tune a FBAR device to a specific frequency by carefully control of AlN and electrode thickness.
第一章 緒論 1
第二章 原理 4
2.1 聲波的運動方程[22] 4
2.2 壓電效應及壓電方程式[23] 6
2.2.1 壓電現象之由來 6
2.2.2 壓電方程式 7
2.3 聲波在壓電體內的傳播[23] 10
2.4 Mason等效電路[23] 15
2.4.1 非壓電平板的Mason等效電路 16
2.4.2 壓電平板的Mason等效電路 17
2.5 氮化鋁(AlN)的結構與特性[26] 19
2.6 反應性射頻磁控濺鍍原理[26] 20
2.6.1 電漿原理 21
2.6.2 直流電漿(dc plasma)[35] 21
2.6.3 射頻磁控的原理及特性 22
2.6.4 反應性濺射模型 23
2.6.5 動力學分析 24
2.6.6 鍍層的成核 24
2.7 乾式蝕刻[45][46] 25
2.7.1 感應耦合式電漿(inductively coupled plasma, ICP)[49] 28
2.7.2 影響ICP電漿蝕刻之參數[50] 29
2.8 薄膜型塊體聲波共振器(FBAR) 31
2.8.1 工作原理[23] 31
2.8.2 薄膜型塊體聲波共振器的電特性[12] 32
第三章 實驗方法與步驟 34
3.1 實驗步驟 34
3.1.1晶片清洗 34
3.1.2 低壓氣態沉積沉積蝕刻罩 35
3.1.3 感應耦合式電漿蝕刻 35
3.1.4 切割晶片 35
3.1.5 黃光微影製程 35
3.1.6 濕式蝕刻[59][60] 37
3.1.6.1 Si非等向性濕式蝕刻 37
3.2 薄膜成長[26] 38
3.2.1 濺鍍系統簡介 38
3.2.2 薄膜沉積 40
3.3 量測系統 42
第四章 實驗結果與討論 43
4.1 薄膜濺鍍 43
4.1.1 電極(Al)的濺鍍 43
4.1.2 濺鍍壓電層(AlN) 44
4.2 蝕刻聲波空腔 46
4.3 元件的電特性 48
4.3.1 電極大小的變化 48
4.3.2 下電極厚度的影響 49
4.3.3 壓電層AlN厚度的影響 50
4.3.4 振動板不同的影響 51
第五章 結論 53
參 考 文 獻 55

表1.1 一些壓電材料的特性 63
表2.1 各種壓電參數的定義 64
表2.2 氮化鋁的物理與化學性質 65
表3.1 沉積電極的濺鍍參數 66
表3.2 沉積氮化鋁的濺鍍參數 66
圖2.1 彈性體內部粒子位移示意圖 67
圖2.2 壓電現象的由來 67
圖2.3 壓電效應 68
圖2.4 z-切面的氮化鋁薄膜示意圖 68
圖2.5 三埠等值 69
圖2.6 有限厚度的聲波材料 69
圖2.7 非壓電材料的Mason等效電路 70
圖2.8 壓電材料的Mason等效電路 70
圖2.9 氮化鋁的結晶構造示意圖 71
圖2.10 電漿能量轉移的基本形式 72
圖2.11 直流電漿放電圖 73
圖2.12 平面磁控放電示意圖 74
圖2.13 反應濺射模型 74
圖2.14 薄膜的形成示意圖 75
圖2.15 感應耦合電漿蝕刻機(ICP)示意圖 76
圖2.16 薄膜塊體聲波共振器的構造 76
圖2.17 共振器在共振頻率時的等效電路 77
圖2.18 壓電共振器等值電路 77
圖3.1 實驗流程圖 78
圖3.2 實驗流程示意圖(蝕刻、濺鍍) 80
圖3.3 所使用的電極大小示意圖 81
圖3.4 KOH蝕刻時間對Si蝕刻的厚度關係圖 81
圖3.5 RF Sputter 結構示意圖 82
圖3.6 RF Sputter 操作流程 83
圖3.7 所使用的量測製具PCB板的示意圖 84
圖4.1 在SiO2上濺鍍時間對鋁電極厚度的關係圖 85
圖4.2 在Si3N4上濺鍍時間對鋁電極厚度的關係圖 85
圖4.3 成長AlN薄膜的晶片剖面SEM圖 86
圖4.4 成長AlN薄膜的晶片剖面SEM圖 86
圖4.5 AlN上濺鍍時間對鋁電極厚度的關係圖 87
圖4.6 AlN薄膜濺鍍時間對膜厚的關係圖 87
圖4.7在SiO2上沉積下電極濺鍍AlN的繞射分析圖 88
圖4.8在Si3N4薄膜沉積下電極濺鍍AlN的繞射分析圖 88
圖4.9在SiO2上沉積AlN的晶相表面圖 89
圖4.10在SiO2上沉積AlN的晶相剖面圖 89
圖4.11在Si3N4上沉積AlN的晶相表面圖 90
圖4.12在Si3N4上沉積AlN的晶相剖面圖 90
圖4.13 濺鍍下電極再沉積AlN的SEM晶相剖面圖 91
圖4.14 沉積不同厚度AlN的SEM晶相剖面圖 91
圖4.15 聲波空腔的正視圖 92
圖4.16 聲波空腔的剖面圖 92
圖4.17 聲波空腔底部的正視圖 92
圖4.18為SiO2的晶片的S11圖、相角圖、Smith Chart圖 93
圖4.19為Si3N4的晶片的S11圖、相角圖、Smith Chart圖 94
圖4.20 使用SiO2不同電極大小,AlN厚度對共振頻率關係圖 95


圖4.21 使用SiO2不同電極厚度,AlN厚度對共振頻率關係圖 96
圖4.22 使用Si3N4不同電極厚度,AlN厚度對共振頻率關係圖 97
圖4.23使用SiO2為振動板,AlN不同厚度對共振頻率關係圖 98
圖4.24 使用Si3N4為振動板,AlN不同厚度對共振頻率關係圖 99
圖4.25兩種振動板使用厚電極,AlN厚度對共振頻率關係圖 100
圖4.26兩種振動板使用薄電極,AlN厚度對共振頻率關係圖 101
圖4.27 在相同AlN厚度的X-ray繞射分析圖 102
參 考 文 獻
1.P. Curie and J. Curie : Bull. Soc. Min. de France, 3, p.90, 1880.
2.吳朗,”電子陶瓷-壓電”,全欣圖書公司,83年12月.
3.A. Langevin : “Ultilisation de l’effect Piezoelectrictique, Presses Unicersitaires de France”, Paris, 1942.
4.W. G. Cady : Phys. Rev., 17, p.531, 1921.
5.K. Lakin, S. Wang, “UHF composite bulk wave resonators”, Proc. Ultrasonics Symp., 834-837, 1980.
6.R. B. Stokes and J. D. Crawfold, “X-band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol. 41, pp.1075-1080, July 1993.
7.K. M. Lakin, G. R. Kline, R. S. Ketcham, A. R. Landin, W. A. Burkland, K. T. McCarron, S. D. Braymen, S. G. Burns,”Thin Film Resonator Technology”, Proceedings of the Annual Frequency Control Symposium 41st, p.371-381, 1987.
8.V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore, “Film Bulk Acoustic Wave Resonator Technology”, Ultrasonics Symposium Proceedings vol.1. pp.529-536, 1990.
9.J. H. Collins, “A short history of microwave acoustics,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.1127-1139, Sep. 1984.
10.M. Schmid, E. Bense, W. Burger, and V. Kravchenko, “Motional Capacitance of multilayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 38, pp.199-206, May 1991.
11.V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore, ”Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
12.K. M. Lakin, G. R. Kline, and K. T. McCrron, “High-Q Microwave Acoustic Resonators and Filters”, IEEE Trans. MTT-S Dig., vol. 41, pp.1517-1520, 1993.
13.R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini,”Electromechanical Coupling Constant Extraction of Thin Film Piezoelectric Materials using a Bulk Acoustic Wave Resonator”, IEEE Transactions On Ultrasonics, Ferroelectrics And Frequency Control, Vol.45, No.1, Jan. 1998.
14.R. Ruby, P. Bradley, J. D. Larson, Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs)”, Electronics Letters, vol. 35, pp.795-795, May. 1999.
15.H. Morkner, R. Ruby, M. Frank, D. Fiqueredo, “An integrated FBAR filter and PHEMT switched-amp for wireless applications”, Microwave Symposium Digest, 1999 IEEE MTT-S International, vol. 4, pp.1393-1396, 1999.
16.P. Osbond, C. M. Beck, C. J. Brierley, M. R. Cox, S. P. Marsh, N. M. Shorrocks, “The Influence of ZnO and Electrode Thickness on the Performance of Thin Film Bulk Acoustic Wave Resonators”, IEEE Ultrasonics Symposium, pp.911-914, 1999.
17.R. B. Stokes and J. D. Crawfold, “X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol. 41, pp. 1075-1080, July 1993.
18.K. M. Lakin, G. R. Kline, R. S. Ketcham, A. R. Landin, W. A. Burkland, K. T. McCarron, S. D. Braymen, S. G. Burns,” Thim Film Resonator Technology”, Proceedings of the Annual Frequency Control Symposium 41st,p 371-381,1987.
19.V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore, ”Film Bulk Acoustic Wave Resonator Technology”, Ultrasonics Symposium Proceedings vol.1. pp.529-536,1990.S.
20.J. H. Collins, “A short history of microwave acoustics,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.1127-1139, Sept. 1984.
21.M.Schmid, E. Benes, W. Burger, and V. Kravchenko, ”Motional Capacitance of :ayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 38, pp.199-206, May 1991.
22.Joel F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, ARTECH HOUSE, 1988.
23.張峰誌,”AT 切面石英振盪器振動模態之分析”,國立成功大學電機工程研究所碩士論文
24.高至鈞,汪建民,”壓電陶瓷縱談”,材料與社會第26期,pp.4-11,78年2月
25.K. Tshbouchi, K. Sugai, N. Mikosiba, “AlN material constants evaluation and SAW properties on AlN/Al2O3 and AlN/Si”, IEEE Ultrasonics Symposium, pp.375-380, 1981.
26.宋宏泰,”在不同基板上以射頻磁控濺鍍法成長氮化鋁薄膜”, 國立成功大學電機工程研究所碩士論文
27.R. Rodrigueq-Clement, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand and A. Figeras, J. Crystal Growth, 133, 59, 1993.
28.Eliseo Ruiz, Santigo Alemany, Physical Review B, 49, 7115, 1994.
29.“新電子材料調查研究報告書”,日本電子工業振興協會,昭和58年3月
30.顏豐明,”材料與社會”, 73, 45, 1993.
31.黃肇瑞,”陶瓷技術手冊(下)”,777, 1995.
32.陳文榮,”反應性射頻濺射法在砷化鎵基板上沉積氮化鋁薄膜之研究”, 國立中山大學電機工程研究所碩士論文
33.楊錦章,”基本濺鍍電漿”,電子發展月刊,68,1983.
34.阿部東彥、家田正之,”電漿化學”,高正雄譯,復漢出版社,84,1984.
35.A. M. Howwastson, “An introduction to gas discharge”, Pregamon Press., 4, pp.84-94, 1976.
36.“真空濺鍍薄膜”,誠真有限公司
37.F. Shinoki, A, Itoh, J. Appl. Phys., vol. 46(8), pp.3381, 1975.
38.H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, S. Nakano, J.J.A.P., vol. 31(1), pp.3446,1992.
39.E. Janczak-Bienk, H. Jensen, G. Sorensen, “Materials Science and Engineering “, A140, pp.696, 1991.
40.Jhon L. Vossen, Werner Kem, “Thin Film Process Part Ⅱ-1”, Academic Press., San Diego, California, 1978.
41.F. S. Ohuchi, P. E. Russell, J. Vac. Sci. Technol., vol. A5(4), pp.1630, 1978.
42.O. Almen, G. Bruce, Nucl. Instrum amd Methods, vol. 11, pp.257, 1961.
43.Brian Champan, “Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
44.Y. G. Lu and L. Wu, “Piezoelectric Ceramics for High Frequencies Application.”, 1990.6.
45.許村州,”氦氣電漿對砷化鋁鎵/砷化鎵異質接面雙極性電晶體之影響”,逢甲大學化學工程所碩士論文
46.江振毅,” 氬氣電漿對砷化鋁鎵/砷化鎵異質接面雙極性電晶體之影響”,逢甲大學化學工程所碩士論文
47.莊達人,”VLSI製造技術”,高立圖書有限公司,第8章,1990.
48.E. C. Douglas, Solid State Technology, vol.24, pp.65, 1981.
49.E. W. Berg and S. W. Pang, “Low-pressure etching of nanostuctures and via holes using an inductively coupled plasma system”, Journal of the Electrochemical Society, vol.146, No.2, pp.775-779, 1999.
50.J. W. Lee, C. R. Abernathy, S. J. Pearton, F. REN, C. Constantine, C. Barratt and R. J. Shul, “Comparison of dry etch damage in GaAs/AlGaAs heterojounction bipolar transistors exposed to ECR and ICP Ar plasma”, Solid State Electronics, vol.42, No.5, pp.733-742, 1998.
51.R. Patrick, S. Baldwith and N. Williams, ”Application of direct bias control in high-density inductively coupled plasma etching equipment”, Journal of Vacuum Science & Technologu A, vol.18, No.2, pp.405-410, 2000.
52.V. P. Trivedi, C. H. Hsu, B. Luo, X. Cao, J. R. LoRache, F. Ren, S. J. Pearton, C. R. Abernathy, E. Lambers, M. Hoppe, C. S. Wu, J. Sasserath, J. W. Lee, K. Mackenzie, “The effect of N2 plasma damage on AlGaAs/InGaAs/GaAs high electron mobility transistors Ⅰ. DC characteristics”, Solid State Electronics, vol.44, pp.2101-2108, 2000.
53.鄭晃忠、丁坤山與康宗貴,”應用於超大積體電路的電漿蝕刻技術”,電子資訊,第2卷,第2期,第55頁至第58頁,1996.
54.F. Ren, J. W. Lee, C. R. Aberathy and S. J. Peaton, “Dry etch damage in ductively coupled plasma exposed GaAs/AlGaAs heterojunction bipolar transistors”, Applied Physics Letters, vol.70, No.18, pp.2410-2412, 1997.
55.廖志皓,鄭世裕,”壓電陶瓷之電器應用”,材料與社會第26期,78年2月
56.Virgil E. Bottom, A. B., M. S., Ph.D., “Introduction to Quartz Crystal Unit Design”, Van Nostrand Reinhold Company, pp.7, pp.11-14, pp.53, pp.64-80, 98, pp.160-177, 1982.
57.J. Zelenka, “Piezoelectric Resonators and Their Applications”, Elsevier Science Publishing Co. Inc., pp.64-85, 1986.
58.Raymond A. Heising, “Quartz Crystals for Electrical Circuits-Their Design and Manufacture”, Electronic Industries Association, 1982.
59.莊達人,”VLSI製造技術”,高立圖書有限公司,87年1月
60.李世鴻,”積體電路製造技術”,五南圖書出版公司,89年3月
61.W. van Gelder, V. E. Houser, “The etching of silicon nitride in phosphoric acid silicon dioxide as a mask”, J. Electrochem. Soc., vol. 114, no. 8, pp.869-872, 1967.
62.S. Wu. L. Wu, Y. T. Shen, F. C. Chang, “Crystalline Structure and Surface Morphology of AlN Films Sputtered on Rotated Y-Cut Quartz(ST-Quartz)”, Jpn. J. Appl. Phys. Vol.40, No.2A, pp.142-145, 2001.
63.L. Wu, S. Wu, and M. C. Chure, “Influence of Substrate Temperature to Prepare C-Axis-Oriented AlN Films on Rotated Y-Cut Quartz(ST-Quartz)”, Jpn. J. Appl. Phys. Vol.39, No.2B, pp.172-173, 2000.
64.S. Wu, L. Wu, Y. T. Shen and F. C. Chang, “Sputtering AlN Thin Film on ST-Quartz”, International Electron Device Material Symposium, 2000.
65.S. Wu, F. C. Chang, Y. T. Shen, L. Wu, “Formation and Surface Acoustic Wave Properties of AlN/ST-X Quartz”, SCOReD , 2001.

66.L. Wu, S. Wu, and H. T. Song, “Influence of sputtering pressure on physical structure of AlN thin films prepared on Y-128º LiNbO3 by rf magnetron sputtering”, The Journal of Vacuum Science and Technology, september 20, 2000.
67.S. Wu, L. Wu, J. H. Chang and F. C. Chang, “SAW Modes on ST-X Quartz with an AlN Layer”, accepted for publication in Materials Letters, 2001.
68.S. Wu, L. Wu, F. C. Chang and J. H. Chang, “Temperature Compensation with AlN films on Y-128º LiNbO3”, accepted for publication in Jpn. J. Appl. Phys, 2001.
69.黃宏達,”薄膜型塊體聲波協振器之製作及特性探討”, 國立成功大學電機工程研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top