跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/28 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王周昇
研究生(外文):Chou-Sheng Wang
論文名稱:砷化鋁鎵/砷化銦鎵/砷化鎵與磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體在加速應力下退化機制之研究
論文名稱(外文):The Study of Degradation Mechanisms under Accelerated Stress in AlGaAs/InGaAs/GaAs and InGaP/InGaAs/GaAs PHEMTs
指導教授:王永和王永和引用關係洪茂峰洪茂峰引用關係
指導教授(外文):Yeong-Her WangMau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:假形高速電子移動電晶體
外文關鍵詞:Pseudomorphic High Electron Mobility Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於低雜訊應用的優點磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體不斷地研究與發展。然而,對元件應用極為重要的應力施加特性的研究仍然是非常有限的。因此,在不同應力條件下磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體的可靠度是值得我們來研究的。
在本文中,我們深入地描述了在加速測試前後閘極尺寸0.25μm × 160μm的磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體的特性變化。例如在140分鐘VDS = 6V and VGS = 0V的熱電子應力施加後,汲極電流20%的退化和飽和區轉導值的驟降是由於通道電子濃度的下降及額外表面散射的增加。像這類劇烈的退化機制在我們的研究裡會有一詳細的討論。另外,我們也做了蕭特基能障特性的加速測試,這是由於它在雜訊特性上扮演著極為重要的角色。在320秒IG = -8mA (50mA/mm)的加速測試後,夾止電壓位移到更負的值而它的大小只增加了約2%,暗示著磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體有著優異和穩定的雜訊特性。除了磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體元件特性的研究外,我們也詳細地探討了在不同加速應力下砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體的可靠度。
最後,我們也發現了在不同的加速應力下磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體在應用上似乎較砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體更為穩定。
In recent years, InGaP/InGaAs/GaAs PHEMTs (Pseudomorphic High Electron Mobility Transistor) have been researched and developed continually due to its advantage of low noise application. However, the study of stressed devices characteristics is still very limited which is very important for device application. Consequently, it is worth of investigating the reliability of InGaP/InGaAs/GaAs PHEMTs under different stress conditions.
In this thesis, InGaP/InGaAs/GaAs PHEMTs with gate dimension of 0.25μm × 160μm have characterized in depth before and after accelerated testing. For example IDS degrades, after 140mins of hot-electron stress at VDS = 6V and VGS = 0V, approximately 20% accompanying with a significant decrease of Gm measured in the saturation region are due to both the channel charge density reduction and the additional surface scattering increasing. Such catastrophic degradation mechanisms will be discussed in detail in our work. In addition, the accelerated testing of the Schottky barrier characteristics is also examined due to it plays an very important role in noise performance. The pinch-off voltage shifts toward further negative values after 320sec of accelerated testing at IG = -8mA (50mA/mm), and the magnitude of the pinch-off voltage is only increased by 2%, which indicates that the InGaP/InGaAs/GaAs PHEMTs have excellent and stable noise performance. Excepting for the investigation of devices characteristics of InGaP/InGaAs/GaAs PHEMTs, we also probe particularly into the reliability of AlGaAs/InGaAs/GaAs PHEMTs under different accelerated stress.
Finally, it is found that InGaP/InGaAs/GaAs PHEMTs seem, after different accelerated stress, to be more reliable for device applications compared with AlGaAs/InGaAs/GaAs PHEMTs
English abstract i
Chinese abstract iii
List of Tables vii
List of Figures viii
Chapter 1 1
Chapter 2 Samples and Experimental 3
2.1 Introduction 3
2.2 Samples 3
2.2.1 The structure of the PHEMT’s 3
2.2.2 The Typical Process Flow for PHEMT’s 5
2.3 Experimental Setup 7
2.3.1 Introduction to Accelerated Tests 7
2.3.2 Measurement Equipments 8
2.3.3 Accelerated Tests of Samples 8
Chapter 3 Accelerated Testing of AlGaAs PHEMT’s Reliability 11
3.1 Introduction 11
3.2 The AlGaAs/InGaAs/GaAs PHEMT’s Structure 12
3.3 Hot Electron Tests of AlGaAs PHEMT’s 12
3.3.1 Degradation Due to Hot Electron and Impact Ionization 12
3.3.2 Gate-drain Breakdown Walkout 13
3.3.3 Existence of the Kink 14
3.3.4 An Increase of IDS in Saturation Region 14
3.3.5 A Bell-shaped Behavior of IG 15
3.3.6 A Further Discussion of the Schottky Junction 18
3.4 Temperature-dependent Characteristics of AlGaAs PHEMT’s 19
3.4.1 Thermal Effects of ID and Gm in Saturation Region 20
3.4.2 Disappearance of the Kink 20
3.4.3 Thermal Effects of Schottky Junction 21
3.5 Summary 22
Chapter 4 Accelerated Testing of InGaP-PHEMT’s Reliability 36
4.1 Introduction 36
4.2 The In0.49G0.51P/In0.15Ga0.85As/GaAs PHEMT’s Structure 37
4.3 Hot Electron Tests of InGaP PHEMT’s 37
4.3.1 Enhancement and Degradation of ID in Saturation Region 37
4.3.2 A bell-shaped Behavior of IG 38
4.3.3 A Comparison of the Schottky Barrier Characteristics 40
4.4 The Combined Tests of High Current Densities and High
Electrical Fields on Schottky Barrier 41
4.5 Temperature-dependent Characteristics of InGaP PHEMT’s………………..41
4.6 High Temperature Storage Test of InGaP PHEMT’s 43
4.7 Summary 44
Chapter 5 Conclusions and Future works 66
5.1 Conclusions 66
5.2 Future Works 67
Reference 68
1.Y. C. Chou, G. P. Li, K. K. Yu, C. S. Wu, Peter Chu, L. D. Hu, and T. A. Midford, “Hot carrier reliability in High power PHEMT’s,” the Technical Digest of IEEE GaAs IC Symposium, Orland, FL, pp. 25-30,1996.
2.R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in Pseudomorohic HEMT’s”, IEEE Trans Electron Devices, vol. 43, no.4, pp. 543-546, 1996.
3.C. Canali, P. Cova, E.D. Bortoli, F. Fantini, G. Meneghesso, R. Menozzi, and E. Zanoli, “Enhancement and Degradation of Drain Current in Pseudomorphic AlGaAs/InGaAs HEMT’s induced by Hot-Electron, “the Technical Digest of IEEE IRPS, pp. 205- 211, 1995.
4.C. Tedesco, M. Manfredi, A. Paccagnella, E. Zanoni, and C. Canali, “Hot carrier induced photon emission in submicron GaAs devices,” in IEDM Tech. Dig, 1991, pp. 437-440.
5.M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow, and B. R. Allen, “A 94-GHz Monolithic Balanced Power Aplifier Using 0.1μm Gate GaAs-Based HEMT MMIC Production Process Technology,” IEEE Microwave and Guided Wave Lett.,vol. 5, no. 1, pp. 12-14 , 1995.
6.Y. Itoh, Y. Horrie, K. Nakahara, N. Yoshida, T. Katoh, and T. Takagi, “A V-band, High Gain, Low Noise, Monolithic PHEMT Amplifier Mounted on a Small Hermetically Sealed Package,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 2, pp. 48-49, 1995.
7.R. Lai, M. Wojtowicz, C. H. Chen, M. Biedenbender, H. C. Yen, D.C. Streit, K. Tan, and P. H. Liu, ”High Power 0.15μm V-band pseudomorphic InGaAs-AlGaAs -GaAs HEMT,” IEEE Microwave and Guided Wave Letters, Vol. 3, pp.363-365,1993.
8.P. C. Chao, M. Shur, M. Y. Kao and B. R. Lee, “Breakdown walkout in AlGaAs/GaAs HEMT’s, “ IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 738-740, Mar. 1992.
9.C. Tedesco. C. Canali, A. Neviani, G. Meneghesso, A. Paccagnella, and E. Zanoni, “Rapid degradation induced by hot-electrons in AlGaAs/GaAs HEMT’s,” Proc. Int. Symp. GaAs and Related Materials, Karuizawa, 1992.
10.A. Watanabe, K. Fuijmoto, M. Oda, T. Tadayoshi, and A. Tamura. “Rapid degradation of WSi self-aligned gate GaAs MESFET by hot carrier effect,” Proc. IRPS, pp.127-130, 1992.
11.H. K. Huang, Y. H. Wang, C. L. Wu, J. C. Wang and C. S. Chang, “Super Low Noise InGaP Gated PHEMT”, IEEE Electron Device Lett., vol. 23, no. 2, Feb. 2002, pp.70-72
12.H. Lee, “Growth of optimization GaAs/(Al,Ga)As modulation-doped heterojunction by MBE for FET’s applications,” Ph.D. Thesis, Cornell University, Ithaca, NY, (1985).
13.M. Hueschen, N. Moll, E. Gowen, and J. Miller, “Pulse doped MODFETs, in IEEE IEDM Technical Digest,” p. 438, San Francisco, CA, (1984).
14.H. Morkoc, W. F. Kopp, T. J. Drummond, S. L. Su, R. E. Thorne, and R. Fisher, Submicron gate GaAs/Al0.3Ga0.7As MESFETs with extremely sharp interface (40A), IEEE Trans. Electron, Devices, vol. ED-29, p. 1013, (1982).
15.B. Ricco’, F. Fantini, F. Magistrali, and P. Brambilla, Reliability of GaAs MESFETs, in Semiconductor Device Reliability, A. Christou and B. A. Unger (eds), Kluwer Academic, pp. 455-470 (1990).
16.K. H. G. Duh, S. M. J. Liu, S. C. Wang, P. Ho, and P. C. Chao, “High Performance Q-band 0.15μm InGaAs HEMT MMIC LNA,” IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., pp. 99-102, 1993.
17.R. E. Kasody, G. S. Dow, A. K. Sharma, M. V. Aust, D. Yamauchi, R. Lai, M. Biedenbender, K. L. Tan, and B. R. Allen,” A High Efficiency V-Band Monolithic HEMT Power Amplifier,” IEEE Microwave and Guided Wave LETT., Vol. 4, No, 9, pp. 303-304, Sep. 1994.
18.M. K. Siddiqui, A. K. Sharma, L. G. Callejo, and R. Lai, “A HIGH POWER BROADBAND MONOLITHIC POWER AMPLIFIER FOR Ka-BAND GROUND TERMONALS,” 1999 IEEE MTT-S Digest, pp. 951-954.
19.P. P. Huang. T. W. Huang, H. Wang. E. Lin, Y. H. Shu, G. S. Dow, R. Lai, M. Biedenbender, and J. Elliot, “A 94-GHz W-band 0.35-W power amplifier module,” IEEE Trans. On Microwave Theory and Tech., vol. 45, no. 12, part 2, pp. 2418-2423, Dec., 1997.
20.P. H. Ladbrooke and S. R. Blight, “Low-Field Low-Frequency Dispersion of Transconductance in GaAs MESFET’s with Implication for Other Rate-Dependent Anomalies,” IEEE Trans. Electron Devices, vol. 35, no. 33, pp. 257-267, 1988.
21.A. Paccagnella, E. Zanoni, C. Tedesco, C. Lanzieri, and A. Cetronio, “Correlation Between Surface-State Density and Impact Ionization Phenomena in GaAs MESFET’s,” IEEE Trans. Electron Devuces, vol. 38, No. 12, pp. 2682-2684, Dec.1993.
22.P. H. Ladbrooke and S. R. Blight, “Low-Field Low-Frequency Dispersion of Transconductance in GaAs MESFET’s with Implication for Other Rate-Dependent Anomalies,” IEEE Trans. Electron Devices, vol. 35, no. 33, pp. 257-267, 1988.
23.A. Paccagnella, E. Zanoni, C. Tedesco, C. Lanzieri, and A. Cetronio, “Correlation Between Surface-State Density and Impact Ionization Phenomena in GaAs MESFET’s,” IEEE Trans. Electron Devuces, vol. 38, No. 12, pp. 2682-2684, Dec.1993.
24.K. W. Lee, K. Lee, M. S. Shur, T. T. Vu, P. C. T. Roberts, and M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in ion-implanted GaAs FET’s,” IEEE Trans. Electron Devices, vol. ED-32, pp. 987-992, 1985.
25.M. Rocchi, “Status of the Surface and Bulk Parasitic Effects Limiting the Performances of GaAs IC’s,” Physica 129B (1985), North-Holland, Amsterdam, pp. 119-138.
26.A. Thomasian, N. L. Saunders, L. G. Hipwood, A. A. Rezazadeh, “Mechanism of Kink Effect Related to Negative Photoconductivity in AlGaAs/GaAs HEMT’s,” Electronics Lett., 25th May 1989, vol. 25, No. 11, pp. 738-739.
27.A. Thomasian, A. A. Rezazadeh, J. K. A. Everard, L. G. Hipwood, “Experimental Evidence for Trap-Induced Photoconductive Kink in AlGaAs/GaAs HEMT’s,” Electronics Lett., 5th July 1990, Vol. 26, No. 14, pp. 1094-1095.
28.G. Meneghesso, C. Canali, P. Cova, E. De Bortoli and E. Zanoni, “Trapped charge modulation: a new cause of instability in AlGaAs/InGaAs pseudomorphic HEMT’s, IEEE Electron Dev. Lett, 17, 232-234,1996.
29.E. Zanoni, M. Manfredi, S. Bigliardi, A. Paccagnella, P. Pisoni, C. Tedesco, and C. Canali, “Impact ionization and light emission in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 39, no. 8, pp. 1849-1857, 1992.
30.K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design consideration and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, pp. 1595-1604 July 1998.
31.M. Sze, physics of Semiconductor Devices. New York: Willy, 1981.
32.J. B. Kuang, P. J. Tasker, G. W. Wang, Y. K. Chen, L. F. Eastman, O. A. Aina, H. Hier, and A. Fathimulla, “Kink effect in submicrometer-gate MBE-grown InAlAs/InGaAs/InAlAs heterojunction MESFET’s,” IEEE Electron Device Lett., vol. 9, pp. 630-632, Dec. 1988.
33.A. Piotrowska, A Guivarc’h and G. Pelous, “Ohmic Contacts to Ⅲ-ⅤCompound Semiconductors:A Review of Fabrication Techniques”, Solid State Electronics, 26(3), 1983, pp. 179-197
34.M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babie, “Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys. , vol. 61, No. 2, Feb. 1986, pp. 643-649.
35.Y. J. Chan, and D. Pavlidis, “ Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT’s by means of low-frequency noise and transconductance dispersion characterization,” IEEE Trans. Electron Devices, vol. 41, pp. 637-642, May. 1994.
36.Y. Okamoto, K. Matsunaga, M. Kuzuhara, and M. Kanamori, “Novel InGaP/AlGaAs/InGaAs heterojunction FET for X-Ku band power applications”, IEEE MTT-S Dig., vol. 3, 1997, pp. 1191-1194.
37.S. Fujita, T. Noda, A. Wagai, C. Nozaki and Y. Ashizawa, “Novel HEMT Structures Using a Strained InGaP Schottky Layer”, in Proc. 5th Int. Conf. Indium Phosphide and Related Materials, Paris, France. Apr. 1993, pp. 497-500.
38.P. C. Chao, A. J. Tessmer, K.-H. G. Duh, P. Ho, M.-Y. Kao, P. M. Smith, J. M. Ballingall, S.-M. J. Liu and A. A. Jabra, “W-band low-noise InAlAs/ InGaAs lattice-matched HEMTs”, IEEE Electron Device Lett., vol. 11, no. 1, Jan. 1990, pp.59-62
39.K. L. Tan, R. M. Dia, D. C. Streit, A. C. Han, T. Q. Trinh, J. R. Velebir, P. H. Liu, T. Lin, H. C. Yen, M. Sholley and L. Shaw, “Ultralow-noise W-band pseudomorphic InGaAs HEMT's” IEEE Electron Device Lett., vol. 11, no. 11, Nov. 1990, pp. 303-305
40.F. S. Shoucair and P. K. Ojala, “High-temperature electrical characteristics of GaAs MESFET’s (25-400℃)”, IEEE Trans. Electron Devices, vol. 39, no. 7, Jul. 1992, pp. 1551-1557
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文