跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志峰
研究生(外文):Chih-Feng Huang
論文名稱:高精確度量測用新型超音波系統之設計
論文名稱(外文):Design of A New Ultrasonic System for High Accurate Measurement
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:98
中文關鍵詞:溫度音速超音波
外文關鍵詞:ultrasoundspeed of soundtemperature
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1008
  • 評分評分:
  • 下載下載:324
  • 收藏至我的研究室書目清單書目收藏:0
  本篇論文使用高精確度超音波系統來量測距離和溫度,首先描述的是如何在空氣中使用多個連續發射的超音波來精確地量測距離。以往這個方法是應用在無線電測距,卻不曾應用在空氣中的超音波測距系統上。此方法主要是使用三個不同但是很接近的超音波頻率,在超音波發射器與接收器是同一個距離的條件下,分別得到三個不同的相位差來實現。
  可行性的實驗系統是使用低成本的的兩個超音波轉換器,將超音波發射器與接收器面對面放置來發射和接收超音波。若按順序地發射不同頻率的超音波,則每個頻率的超音波就會產生自己的相位差;也就是說,不同頻率的超音波訊號將使超音波傳播同一距離後,產生不同的相位差,再將這些不同的相位差運算後,就能精確計算出超音波發射器與接收器的距離。
  本系統利用單晶片微電腦為基礎,設計多頻率連續波的產生器和相位偵測器來記錄並計算相位差的資訊和距離,然後再送到LCD(液晶螢幕)或PC。PC只用於校正系統,校正後的多頻率相位差法的超音波系統可獨立操作並顯示距離在LCD上。為了測試整個系統的效能,我們也做了距離量測的實驗,實驗的距離範圍超過1.5m,可量測的解析度高達0.05mm。而此超音波測距系統的主要優點為高解析度、使用低成本的窄頻寬超音波發射器並且容易實現與操作。
  另外,我們發展出以超音波量測溫度的新方法,主要是先量測超音波的音速。在一對超音波發射器和接收器之間的空氣中,其平均溫度與音速有高度的相關性。所發展的新方法是使用兩個不同但是很接近的超音波頻率,分別得到兩個不同的相位差來實現音速的量測。兩個低成本的40 kHz超音波轉換器被放置在新生兒保溫箱中,使用面對面的方式來連續發射和接收超音波,兩個頻率按順序發射出去就可得到個別的相位差,當超音波發射器和接收器的距離固定時,比較兩個頻率的相位差來得到超音波速度高精確的值。超音波的測音速系統對新生兒箱能提供快速且精確的溫度監控,利用單晶片為基礎設計兩頻率連續波的產生器和相位偵測器,並且紀錄和計算相位差的資訊來重建溫度,然後再送到PC。PC主要用來校正此系統並能對於新生兒箱的溫度做紀錄與控制。根據理論推導,當超音波的發射器和接收器的距離固定在一公尺時,溫度解析度在 ±0.2℃以內,但在實驗室內僅能證實其準確度為 ±1℃. 超音波的溫度量測系統主要的優點是高解析度、低成本和容易實現此系統。
  In this thesis, a high accurate ultrasonic system is used to measure the distance and temperature. At first, a high accurate multiple-frequency continuous wave (MFCW) ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to RF distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely-spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40-kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based MFCW generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05mm, with a range of over 1.5m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements and ease of implementation.
  In addition, we develop a new ultrasonic measurement method based on the speed of sound to measure the temperature. The average temperature of the air between the pair of ultrasonic T/R transducers is positively associated with the speed of sound. The method presented here is based upon the comparative phase shifts generated by two continuous ultrasonic waves with different but closely spaced frequencies. In the infant incubator, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Two frequencies are transmitted serially, each generating its own phase shift. Comparison of the phase shifts allows a highly accurate evaluation of the ultrasonic velocity when the distance between the transmitter and receiver is fixed. Ultrasonic velocity measurement system can provide a quick and precise monitoring of the temperature in an infant incubator. A single-chip microcomputer-based two-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting temperature, which is then sent to PC. The PC is used for calibrating the system and recording or controlling the temperature in an infant incubator. Theoretically, the resolution of temperature was found to be within ±0.2℃ when the distance between the transmitter and receiver is 1 m. But the temperature can be only verified by with an accuracy of ±1℃ by our laboratory prototype. The main advantages of this ultrasonic temperature measurement system are high resolution, low cost, and ease of implementation.
ABSTRACT
LIST OF FIGURES

CHAPTER 1. INTRODUCTION……………………………………………………01

CHAPTER 2. METHODS ….…………………..………………………………..... 07
  2.1 METHOD OF THE RANGE MEASUREMENT……………………..…...06
  2.2 METHOD OF THE TEMPERATURE MEASUREMENT……...…………15

CHAPTER 3. SYSTEM DESIGN …………………………………………………20
  3.1 DESIGN OF THE ULTRASONIC RANGE-MEASURING SYSTEM……..20
    3.1.1 Hardware of the system………………………….….……..………20
      3.1.1.1 Multiple-frequency ultrasound source ……………...………21
      3.1.1.2 Auto-gain-controlled (AGC) amplifier ……………..………21
      3.1.1.3 Digital phase meter ………………………………...………22
      3.1.1.4 8951 single-chip microcomputer ………………......………22
      3.1.1.5 The calibration system……………………………...………23
    3.1.2 Software of the system ………………………….……...…...……23
  3.2 DESIGN OF THE TEMPERATURE MEASURE-MENT SYSTEM……...…24
    3.2.1 Hardware Design………………..………………..………...………24
      3.2.1.1 Two-frequency signal generation system …………...………25
      3.2.1.2 Auto-gain-controlled (AGC) amplifier ……………..……… 25
      3.2.1.3 Digital phase meter………………………………………… 25
      3.2.1.4 Microprocessor-based controller……………………………26
      3.2.1.5 The Calibration system………………………………………26
    3.2.2 Software of the system………………………………...……………27

CHAPTER 4. TESTING THE SYSTEM………………………………..…………..29
  4.1 MEASUREMENT OF THE ACCURATE SOUND’S VELOCITY…….….29
  4.2 EXPERIMENT OF THE RANGE MEASUREMENT………………………30
    4.2.1 Experimental method………………………………….…...………32
    4.2.2 Results……………………………………………………….……32
    4.2.3 Relationship between three phase-shift data and the moved distance..34
  4.3 EXPERIMENT OF THE TEMPERATURE MEASUREMENT……………39
    4.3.1 Experimental method………………………………………………39
    4.3.2 Results………………………………………………………………40

CHAPTER 5. DISCUSSION………………………………………………………42
  5.1 DISCUSSION OF THE DISTANCE MEASUREMENT…………………42
  5.2 DISCUSSION OF TEMPERATURE MEASUREMENT…………………47

CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENT……………… 52
REFERENCES………………………………………………………………………54
[1] M. Parrilla, J.J. Anaya. And C. Fritsch, “Digital signal processing techniques for high accuracy ultrasonic range measurements.” IEEE Trans. on Inst. and Meas., Vol. 40, pp. 759-763, 1991.

[2] D. Marioli et al., “Digital time-of-flight measurement for ultrasonic sensors.” IEEE Trans. Inst. and Meas., Vol. 41, pp. 93-97, 1992.

[3] M. Bramanti, E. A. Salerno, A. Tonazzini, S. Pasini, and Antonio Gray, “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers.” IEEE Trans. On Instrumentation and Measurement, Vol. 45, No. 1, pp.159-167, 1996.

[4] R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound’ IEEE Trans. On Biomedical Engineering, Vol. 42, No. 8, pp. 828-839, 1995.

[5] D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing. ” IEEE Trans. on Instrumentation and Measurement. Vol. 43, No.4, pp.578-582, 1994.

[6] F. Figueroa and E. Barbieri, “An ultrasonic ranging system for structural vibration measurements.” IEEE Trans. on Instrumentation and Measurement, Vol. 40, pp.764-769, 1991.

[7] M. S. Young and Y. C. Li , “A high precision ultrasonic system for vibration measurements” American Institute of Physics, Rev. Sci. Instrum., Vol. 63, No. 11, pp.5435-5441, 1992.

[8] M. Yang, H. B. Bury, and J. O. Gray, “A multifrequency AM-based ultrasonic system for accuracy distance measurement” IEEE Trans. on Instrumentation and Measurement. Vol.43, No.6, pp.861-866, 1994.

[9] C. F. Huang, M. S. Young and Y. C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement.” American Institute of Physics, Rev. Sci. Instrum., Vol. 70, No. 2,pp.1452-1458, 1999.

[10] M. Gilles, B. Eric and F. Laurent, “Local measurement validation for an intelligent chirped-FM ultrasonic range sensor.” IEEE Trans. on instrum. and meas., vol. 49, pp. 835-839, 2000.

[11] G. S. K. Wong, “Speed of sound in standard air.” J. Acoust. Soc. Am., Vol. 79, No. 5,pp.1359-1366, 1986.

[12] K. D. Wilson and W. T. Dennis, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am., Vol. 96, pp. 1080-1095,1994.

[13] A. S. William, W. F. John and P. B. Agnes, “The influence of the thermal environment upon the survival of newly born premature infants.” Pediatrics, vol. 22, pp. 876-886, 1958.

[14] H. M. Keith, C. G. Robert, A. R. John and M. J. Maisels, “Oxygen consumption and insensible water loss in premature infants under radiant heaters.” Pediatrics, vol. 66, pp. 228-232, 1980.

[15] W. M. Seth and B. Stephen, “Optimal thermal management for low birth weight infants nursed under high-powered radiant warmers.” Pediatrics, vol. 79, pp. 47-54, 1987.

[16] B. Djaaffar, V. Pierre and F. Gilbert, “Dynamic programming approach for newborn’s incubator humidity control. IEEE Trans. on Biomedical engineering, vol. 45, pp. 48-55, 1998.

[17] P. M. Michael, J. P. Matthew, S. Andrew, H. Chris and D. K. Alan, “A clinical comparison of radiant warmer and incubator care for preterm infants from birth to 1800 grams.” Pediatrics, vol. 108, pp. 395-401, 2001.

[18] G. A. Daigle and M. R. Stinson, “Impedance of grass-covered ground at low frequencies measured using a phase difference technique.” J. Acoust. Soc. Am., Vol. 81, No. 1, pp.62-68, 1987.

[19] S. K. Jeng and C. H. Liu, “Wave propagation in media with three-dimensional quadratic refractive index profile.” J. Acoust. Soc. Am., Vol. 81, No. 6, pp.1732-1739, 1987.

[20] R. H. Mellen and G. Siling, “Sound propagation through atmospheric turbulence: multifractal phase fluctuations.” J. Acoust. Soc. Am., Vol. 97, No. 1, pp.141-146, 1995.

[21] I. C. Romer, R. A. Gaggioli, and A. S. El-Hakeem, “ Analysis of Quadipole Method for the Velocity of Sound.” J. Acoust. Soc. Am., Vol. 40, No. 1, pp.86-98, 1966.

[22] S. A. Mclnermy, W. C. Meecham, T. V. Ngo, and S. C. Liu, “ Diffraction of a Baffled Dipole: Frequency Dependence.” J. Acoust. Soc. Am., Vol. 77, No. 5,pp.1713-1715, 1985.

[23] G. Tardajos, G.G. Gaitano, and F.R.M. de Espinosa, “Accurate, Sensitive, and Fully Automatic Method to Measure Sound Velocity and Attenuation.” American Institute of Physics, Rev. Sci. Instrum., Vol. 65, No. 9, pp.2933, September 1994.

[24] G. S. K. Wong and T. F. W. Embleton, “Variation of the speed of sound in air with humidity and temperature.” J. Acoust. Soc. Am., Vol. 77, No. 5, pp.1710-1711, 1985.

[25] C. G. Don and A. J. Cramond, “Impulse propagation in a neutral atmosphere.” J. Acoust. Soc. Am., vol. 81, pp. 1341-1349, 1987.

[26] J. P. Barton, “ Sound Propagation within a Chemically Ideal Gas.” J. Acoust. Soc. Am., Vol. 81, No. 2, pp. 233-237, 1987.

[27] R. A. Baikalova, G. M. Krekov and L. G. Shamanaeva, “Theoretical estimates of sound scattering by atmospheric turbulence.” J. Acoust. Soc. Am., vol. 83, pp. 1332-1335, 1988.

[28] W. S. Chiu, G. C. Lauchle and D. E. Thompson, “Subsonoic axial flow fan noise and unsteady rotor force.” J. Acoust. Soc. Am., vol. 85, pp. 641-647, 1989.

[29] T. A. Griffy and E. L. Hixson, “Atmospheric acoustic noise as a function of altitude.” J. Acoust. Soc. Am., vol. 85, pp. 1089-1091, 1989.

[30] L. Nijs and C. P. A. Wapenaar, “The influence of wind and temperature gradients on sound propagation, calculated with the two-way wave wquation.” J. Acoust. Soc. Am., vol. 87, pp. 1987-1998, 1990.

[31] D. K. Wilson and D. W. Thomson, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am., vol. 96, pp. 1080-1095, 1994.

[32] E. V. Bukhman, S. G. Gershman, V. D. Svet, and G. N. Yakovenko, “Spectral analysis of acoustic variations on the surface of the human body.” Acoust. Physics, vol. 41, pp. 41-48, 1995.

[33] Z. Lazreq, M. B. Tahar, J. M. Ville and J. M. Auger, “A mixed experimental and theoretical method for noise propagation and radiation prediction of a cowled axial fan.” J. Acoust. Soc. Am., vol. 100, pp. 166-177, 1996.

[34] A. P. Bhansali, W. Z. Black, and I. Iarzynski, “Ultrasonic Measurement of Convective Heat Transfer Coefficients on a Uniform Melt Layer.” American Institute of Physics, Rev. Sci. Instrum., Vol.67, No. 4, pp.1577-1587, 1996.

[35] L. R. Hole, P. Lunde, Y. T. Gjessing, “ Effects of Strong Sound Velocity Gradients on Propagation of Low-frequency Impulse Sound: Comparison of Fast Field Program Predictions and Experimental Data.” J. Acoust. Soc. Am., Vol. 102, No. 3, pp. 1443-1453, 1997.

[36] A. B. Timothy, C. L. Gerald, D. Steven, and T. R. Eric, “Outer-flow effects on turbulent boundary layer wall pressure fluctuations.” J. Acoust. Soc. Am., vol. 105, pp. 2097-2106, 1999.

[37] A. S. El-Hakeem, R. A. Gaggioli, and I. C. Romer, “ Refined Tube Method for Measuring the Sound Wavelength in Gases-Principles of Operation.” J. Acoust. Soc. Am., Vol. 40, No. 6, pp.1485-1488, 1966.

[38] P. Holmberg, ”Robust Ultrasonic Range Finder —an FFT analysis.” Meas. Sci. Technol. Vol.3, pp.1025, July 1992.

[39] F. E. Geuning, M. Varlan, C. E. Eugene, and Pascal Dupuis, “ Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods.” IEEE Trans. On Instrumentation and Measurement, Vol. 46, No. 6, pp.1236-1240, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top