跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾祖華
研究生(外文):Tsu-Hua Ai
論文名稱:具功因校正及無損耗緩震電路之整合型交/直流轉換器
論文名稱(外文):Integrated AC/DC Converters with Power Factor Correction and Nondissipative Snubber
指導教授:陳建富陳建富引用關係梁從主
指導教授(外文):Jiann-Fuh ChenTsorng-Juu Liang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:85
中文關鍵詞:轉換器功率因數校正緩震電路
外文關鍵詞:power factor correctionconvertersnubber
相關次數:
  • 被引用被引用:5
  • 點閱點閱:811
  • 評分評分:
  • 下載下載:247
  • 收藏至我的研究室書目清單書目收藏:0
  本論文討論不同型式具有功因校正的整合型交/直流轉換器,以及各式的無損耗緩震電路。並提出一新型具有功因校正的整合型交/直流轉換器以及整合型無損耗緩震電路。
  本文所提出之架構將整合型順向式及返馳式電路以一後級調整器結合在一起,此整合型順向式及返馳式電路如同兩組子轉換器,共同分擔總輸出功率。為維持高輸入功因,返馳式電路輸送大部分的功率。具有快速響應的後級調整器可抑制電源頻率之漣波,使輸出電壓維持定值。因此所提出之電路具有快速之動態響應。因為本電路輸入端不需使用高壓儲能電容及電流偵測器,故在不連續導通模式下,本電路具有高輸入功因與低電源頻率漣波輸出。而輸入電壓可變動在一般標準的測試範圍(0.8~1.2標么),故適合於家庭及工業上之應用。
  為提升交/直流轉換器之效率,尤其是工作在不連續導通模式,一新式的整合型無損耗緩震電路在本文提出。利用多繞組變壓器,此無損耗緩震電路可與返馳式或本文提出之交/直流轉換器整合在一起,且不需外加鐵心、主動開關元件及其驅動器。因此本文所提出之電路具低成本與元件體積,其理論及實驗結果將在本論文中闡述。
  In this dissertation, various integrated AC/DC converters with power factor correction and nondissipative snubber are discussed. A novel integrated AC/DC converter with power factor correction and line-frequency ripple suppression is proposed. And a novel nondissipative snubber integrated with AC/DC converters is also proposed.
  The proposed topology combines an integrated flyback and forward circuits with a post regulator. The integrated flyback and forward circuits function as two sub-converters that share the total output power. To maintain a high power factor, the flyback circuit delivers the major output power. The post-regulator with fast response to suppress line-frequency ripple controls the output voltage in constant. Therefore the proposed circuit can result in a good performance with fast dynamic response. Without the use of high voltage bulk capacitor or current sensor, the circuit features high power factor and low output line-frequency ripple in discontinuous conduction mode. The input voltage can be varied over the standard testing range (0.8-1.2 p.u.), it is suitable for home or industrial applications.
  To improve the efficiency of AC/DC converters, especially operating in discontinuous conduction mode, an integrated nondissipative snubber is proposed. By the use of a multi-winding transformer, the novel nondissipative snubber can be integrated with flyback or proposed AC/DC converters. No additional magnetic core, active switching and driver are needed for the proposed integrated nondissipative snubber. Therefore the proposed topology improves the efficiency without over-dimensioning of parts and with very low cost. The theoretical analysis and experimental results are presented.
CONTENTS I
LIST OF TABLES III
LIST OF FIGURES IV
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 1
1.2 Organization 6
CHAPTER 2. INTEGRATED CONVERTERS WITH POWER FACTOR 8 CORRECTION
2.1 Conventional integrated PFC converters 8
2.1.1 Integrated PFC converter in cascade 8
2.1.2 Integrated PFC converter in parallel 15
2.2 Conventional flyback-forward converter 17
2.3 Proposed flyback-forward converter and the principle of operation 17
CHAPTER 3. ANALYSIS AND PERFORMANCE OF THE PROPOSED 21
FLYBACK-FORWARD CONVERTER
3.1 Power factor (PF) and total harmonics distortion (THD). 21
3.2 DCM and CCM boundary conditions 27
3.2.1 Flyback sub-converter 27
3.2.2 Forward sub-converter 28
3.3 Effects of the variation of input voltage 29 3.4 Design guidelines for main circuit components 29
3.4.1 Power switches and diodes 29
3.4.2 Capacitors 30
3.4.3 Magnetic components 33
3.5 Performance of the proposed flyback-forward converter 33
3.6 Summary 34
CHAPTER 4. INTEGRATED NONDISSIPATIVE SNUBBER 44
4.1 Introduction 44
4.2 Regenerative and nondissipative snubbers 47
4.3 Proposed topology of integrated nondissipative snubber 50
4.4 Analysis of the proposed integrated nondissipative snubber 56
4.5 Simulation and experimental results of the proposed integrated 66 nondissipative snubber
4.6 Summary 77
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 78
5.1 Conclusions 78
5.1 Recommendations 79
REFERENCES 80
LIST OF PUBLICATIONS 85
[1] J. Sebastián, A. Fernandez, P. Villegas, M. Hernando and M. J. Prieto, “New topologies of active input current shapers to allow AC-to-DC converters to comply with the IEC-1000-3-2,” Proc. IEEE PESC 2000, Vol. 2, pp. 565 –570, 2000.
[2] Electromagnetic Compatibility (EMC)—Part 3: Limits section II: Limits for harmonic current emissions (Equipment input current 16A per phase), IEC 1000-3-2, 1st ed., 1995.
[3] R. Erickson, M. Madigan and S. Singer, “Design of a simple high-power-factor rectifier based on the flyback converter,” Proc. IEEE APEC’90, pp. 792-801, 1990.
[4] W. Tang, Y. Jiang, G. C. Hua, F. C. Lee and I. Cohen, “Power factor correction with flyback converter employing charge cocntrol,” Proc. IEEE APEC'93, pp. 293-298, 1993.
[5] N. Backman and T. Wolpert, “Simplified single stage PFC including peak current mode Control in a flyback Converter,” Proc. IEEE INTELEC 2000, pp. 317-324, 2000.
[6] F. Yan, “PFC electronic ballast for xenon short arc lamps,” Proc. IEEE PEDS'99, pp. 501-505, 1999.
[7] C. Aguilar, F. Canales, J. Arau, J. Sebastián and J. Uceda, “An integrated battery charger/discharger with power-factor correction,” IEEE Trans. on Industrial Electronics, Vol. 10, pp. 597-603, 1997.
[8] K. Liu and Y. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” Proc. IEEE PESC'89, Vol. 2, pp. 825 –829, 1989.
[9] M. Madigan, R. Erickson and E. Ismail, “Integrated high quality rectifier-regulators,” Proc. IEEE PESC'92, pp. 1043 –1051, 1992.
[10] M. Willers, M. Egan, J. Murphy and S. Daly, “A BIFRED converter with a wide load range,” Proc. IEEE IECON'94, pp. 226-231, 1994.
[11] M. Madigan and R. Igarashi, “Integrated high quality rectifier-regulators”, IEEE Trans. on Industrial Electronics, pp. 749 –758, Aug. 1999.
[12] G. Spiazzi and S. Buso, “Power factor preregulators based on combined buck-flyback topologies,” IEEE Trans. on Power Electronics, pp. 197-204, Mar., 2000.
[13] K. Sin, and Y. Lee, “Novel fast-response AC-DC converter with regenerative circuit and high power factor” Proc. IEEE IECON '97, pp. 770-773, 1997.
[14] H. Tacca, “Single-switch, two-output flyback-forward converter operation,” IEEE Trans. on Power Electronics, Vol. 9, pp. 903-911, 1998.
[15] H. Tacca, “Power factor correction using merged flyback-forward converters,” IEEE Trans. on Power Electronics, Vol. 7, pp. 585-594, 2000.
[16] M. Nagao, “A novel one-stage forward-type power-factor-correction circuit,” IEEE Trans. on Power Electronics, Vol. 15, No. 1, pp. 103-110, Jan. 2000.
[17] M. H. L. Chow, Y. S. Lee, and C. K. Tse, “Single-stage single-switch isolated PFC regulator with unity power factor, fast transient response and low-voltage stress,” IEEE Trans. on Power Electronics, pp.156 -163, 2000.
[18] K. W. Siu, Y. S. Lee, and C. K. Tse, “Analysis and experimental evaluation of single-switch fast-response switching regulators with unity power factor,” IEEE Trans. on Industrial Application, pp. 1260-1266, 1997.
[19] R. Redl, L. Balogh, and N. O. Sokal, “A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage,” Proc. IEEE PESC'94, pp.1137-1144, 1994.
[20] T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage converter achieving power-factor correction and fast regulation,” IEEE Trans. on Industrial Electronics, pp.759-7767, 1999.
[21] C. Qiao and K. M. Smedley, “A topology survey of single-stage power factor corrector with a boost type input-current-shaper,” IEEE Trans. on Power Electronics, Vol. 16 No. 3, pp. 360-368, 2001.
[22] J. H. Liang, W. S. Chien, and C. Leu, “Skynet power factor correction cell,” Proc. IEEE APEC 2000, Vol. 1, pp. 475-479, 2000.
[23] M. H. Kheraluwala and S. A. Hamamsy, “Modified valley fill high power factor electronic ballast for compact fluorescent lamps,” Proc. IEEE PESC'95, pp. 10-14, 1995.
[24] M. A. Johnston and R. W. Erickson, “Reduction of voltage stress in the full bridge BIBRED by duty ratio and phase shift control,” Proc. IEEE APEC'94, Vol. 2, pp. 849-855, 1994.
[25] V. S. Murali and C. K. Tse, “Comparison of small-signal dynamics of BIFRED and single-stage cascaded boost-and-flyback PFC converters,” Proc. IEEE PESC'98, Vol. 2, pp. 1111-1117, 1998.
[26] M. J. Willers, M. G. Egan, J. M. D. Murphy and S. Daly, “A BIFRED converter with a wide load range,” Proc. IEEE IECON '94, Vol. 1, pp. 226 –231, 1994.
[27] M. J. Willers, M. G. Egan, S. Daly and J. M. D. Murphy, “Analysis and design of a practical discontinuous-conduction-mode BIFRED converter,” IEEE Trans. on Industrial Electronics, Vol. 46, issue 4, pp. 724-733, 1999.
[28] G. Spiazzi and S. Buso, “Comparison between two single-switch isolated flyback and forward high-quality rectifiers for low power applications,” Proc. IEEE APEC 2002, Vol.1, pp. 249 –255, 2002.
[29] J. Sebastián, P. Villegas, F. Nuño, O. García and J. Arau, “Improving dynamic response of power factor preregulators by using two-input high-efficient post-regulators,” IEEE Trans. on Power Electronics, Vol. 11, pp. 1007-1016, 1997.
[30] J. Sebastián, P. Villegas, F. Nuño and M. Hernando, “High-efficiency and wide-bandwidth performance obtainable from a two-input buck converter,” IEEE Trans. on Power Electronics, Vol. 7, pp. 706-717, 1998.
[31] J. Sebastián, P. Villegas, M. Hernando, F. Nuño and F. FerŃandez, “Average-current-mode control of two-input buck post-regulators used in power-factor correctors,” IEEE Trans. on Industrial Electronics, Vol. 6, pp. 569-576, 1999.
[32] N. Mohan, T. M. Undeland, and W. P. Robbins, 1995, Power Electronics; Converter, Applications and Design (New York ; John Wiley), pp. 680-688.
[33] S. J. Finney, B. W. Williams, T. C. Green, “RCD snubber revisited,” IEEE Trans. on Industry Application, Vol. 32 , pp. 155 –160, Jan.-Feb. 1996.
[34] O. M. Clark, “Transient voltage suppressor types and application,” IEEE Trans. on Power Electronics, Vol. 5, , pp. 20-26, Nov. 1990.
[35] Data Book 1- Supplemental Data Book and Design Gulide, Power Integrations INC., pp. 1-6 and 1-7, 1998.
[36] T. F. Wu, S. A. Liang, and C. H. Lee, “A family of isolated single-stage ZVS-PWM active-clamping converters,” Proc. IEEE PESC'99, Vol. 2, pp. 665-670, 1999.
[37] P. Xu, J. Wei, and F. C. Lee, “The active-clamp couple-buck converter-a novel high efficiency voltage regulator modules,” IEEE PEDS 2001, Vol. 1, pp. 252-257, 2001.
[38] Q. Li and F. C. Lee, “Design consideration of the active-clamp forward converter with current mode control during large-signal transient,” Proc. IEEE PESC 2000, Vol. 2, pp. 966-972, 2000.
[39] Q. Li, F. C. Lee, and M. M. Jovanovic, “Large-signal transient analysis of forward converter with active-clamp reset,” Proc. IEEE PESC’98, Vol. 1, pp. 633-639, 1998.
[40] M. T. Zhang, and F. C. Lee, “Commutation analysis of self-driven synchronous rectifiers in an active-clamp forward converter,” Proc. IEEE PESC’96, Vol. 1, pp. 868-873, 1996.
[41] J. G. Cho, C. Y. Jeong, and F. C. Lee, “Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp,” IEEE Transactions on Power Electronics, Vol. 13, No. 4, pp. 601-607, 1998.
[42] J. G. Cho, H. R. Geun, and F.C. Lee, “Zero voltage and zero current switching full bridge PWM converter using secondary active clamp,” Proc. IEEE PESC’96, Vol. 1, pp. 657-663, 1996.
[43] T. Ninomiya, T. Tanaka and K. Harada, “Analysis and optimisation of a nondissipative LC turn-off snubber,” IEEE Trans. on Power Electronics, Vol. 3, pp. 1147-156, 1988.
[44] R. Petkov and L. Hobson, “Analysis and optimisation of a flyback convertor with a nondissipative snubber,” IEE Proceedings on Electric Power Applications, Vol. 142, Issue: 1, pp. 35-42, Jan. 1995.
[45] M. Hirokawa and T. Ninomiya, “Nondissipative snubber for rectifying diodes applied to a front-end power supply,” Proc. IEEE PCC-Osaka 2002, Vol. 3, pp.1176-1181, 2002.
[46] R. Petkov and L. Hobson, “Optimum design of a nondissipative snubber,” Proc. IEEE PESC’94, pp.1188-1195, 1994.
[47] M. Jinno, “ Efficiency improvement for SR forward converters with LC snubber,” IEEE Trans. on Power Electronics, Vol. 16, No. 6, pp. 812-820, Nov. 2001
[48] C. Qing, F. C. Lee and M. M. Jovanovic, “Small-signal analysis and design of weighted voltage control for a multiple-output forward converter,” IEEE Transactions on Power Electronics, Vol. 10, Issue: 5, pp. 589-596, Sept. 1995.
[49] D. Maksimovic, R. W. Erickson and C. Griesbach, “Modeling of cross-regulation in converters containing coupled inductors,” IEEE Transactions on Power Electronics, Vol. 15, pp.607-615, July 2000.
[50] S. Cúk, “Switching DC-to-DC converter with zero input or output current ripple,” Proc. IEEE IAS'78, pp. 1131-1146, 1978.
[51] R. D. Middlebrook and S. Cúk, “Isolation and multiple output extensions of a new optimum topology switching DC-to-DC converter,” Proc. IEEE PESC'78, pp. 256-264, 1978.
[52] S. Cúk and R. W. Erickson, “A conceptually amplifier technique eliminates current Ripple,” Proc. Powercon 5, pp. G3.1-G3.22, May 1978.
[53] L. Hsiu, W. Kerwin, A. F. Witulski, R. Carlsten and R. Ghotbi, “A coupled-inductor, zero-voltage-switched dual-SEPIC converter with low output ripple and noise,” Proc. IEEE INTELEC'92, pp.186-193, 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top