(3.235.108.188) 您好!臺灣時間:2021/03/07 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張耀堂
研究生(外文):Yao-Tang Chang
論文名稱:光纖光柵分碼多工網路對多重擷取與光拍差干擾之消除抑制
論文名稱(外文):Studies on Multiple-Access and Optical Beat Noises Reduction in Fiber-Grating Optical CDMA Decoders
指導教授:黃振發黃振發引用關係
指導教授(外文):Jen-Fa Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:74
中文關鍵詞:光碼多工存取多重擷取干擾最大長度序碼布拉格光纖光柵光拍差干擾
外文關鍵詞:Multiple access interferenceM-sequence CodeOptical Beat InterferenceWalsh CodeOptical Code Division Multiple AccessFiber Bragg Grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
在先前;我們已經對於架構於布拉格光柵的光分碼多工系統進行探討。這篇論文中;我們在相同的架構下,對於系統中多重存取干擾(MAI),暨由於緊鄰重疊(overlapping)波長所衍生的光拍差干擾(OBI)同時進行消除之探討。最大長度序碼(M-sequence) 和 Walsh codes 將被應用蝕刻於布拉格光柵,使得;接收端中的平衡檢測器能發揮互相消除mutual cancellation)的效應,如此;可確保多重存取干擾(MAI)暨光拍差干擾(OBI)有效且同時性的被抑制與消除。
理論上;光拍差干擾與所採用準正交碼的run length有重要的相關性,在光領域中;若選用的碼型具有相近的波長出現(wavelength present)暨波長關閉(wavelength absent)的特性。亦即;類比於電領域中信號位元的ON、OFF。如此;我們可預期:在接收端採用布拉格光柵製作的濾波器,當進行透射端與反射端的解碼過程後,投注於一對的後級平衡檢測器,會產生互相消除的效應。由模擬結果顯示:在消除光拍差干擾情形下,系統的信號雜訊比(SIR)仍可維持35db以上。
在光拍差干擾抑制上;有少數碼型無法有效顯現互相消除的效應,我們提出:可將該碼型用於補償解碼器,此舉不僅可解決光拍差干擾問題,而且可用來解決此系統架構因不平坦光源所衍生的多重存取干擾問題。其次;我們提出:在使用者數目(user capacity)保持不變情形下,經由波長適當的穿插配置(wavelength interleaving allocation)而造成護衛帶(guard band)的效果。如此;在電領域上所採用的展頻方法,與我們提議的展時方法互相結合,因此對於此通訊系統架構中光拍差干擾的抑制與降低將更加有效可行。
An optical spectral coding technique in fiber-grating-based optical code-division multiple- access (OCDMA) system has been investigated in our previous work. In this thesis, the same architecture is set up to investigate the reduction of multiple access interference (MAI) and optical beat interference (OBI) induced by those adjacent grating chips. FBGs written as M-sequence and Walsh codes is proposed for such MAI and OBI’s cancellation in spectrally balanced photo-detectors.

Theoretically, OBI is dependent upon run length of pseudo-orthogonal codes. The wavelength vector is characterized by nearly the same number of “on” chips (i.e., logic “1” chips) and “off” chips (i.e., logic “0” chips). In the differential decoding scheme, subtraction of reflected and transmitted branches of wavelength chips will result in mutual cancellation. It is seen that differential decoding scheme characterizes a better error performance on eliminating MAI and OBI problem. Furthermore, the stimulant result is shown SIR above 35 dB on reductions of OBI.

Since a few codes are characterized by the worse performance of suppressing OBI, we propose that worse code pattern is pre-written with isolated encoder/decoder for compensation purpose. This not only decreases MAI due to non-flattened incoherent sources and non-ideal FBG coders, and also OBI caused by the multiple adjacent gratings. Therefore, MAI and OBI is decreased simultaneously. Furthermore, we propose that wavelength interleaving allocation method can result in guard band to suppress OBI. Thus, MAI and OBI will be decreased simultaneously due to combining spreading time and spreading frequency method.
Abstract I
Contents IV
List of Figures VI
List of Tables VIII

Chapter 1. Introduction 1

1.1 MAI and OBI Problems 1
1.2 MAI Reduction by Frequency Hopping and Codes Sequences Technique 6
1.3 OBI Reduction by Clipping Tone and Codes Sequence Technique 10

Chapter 2. MAI Reductions with FBG-Based OCDMA Network 15

2-1 The Architecture of FBG-based OCDMA Network 5
2-2 MAI Reduction by Appling M-sequence Codes 20
2-3 MAI Reduction by Appling Walsh codes 23
2-4 MAI Simulation 27

Chapter 3. OBI Suppression in FBG-Based OCDMA Network 31

3-1 The Solution of OBI Reduction 31
3-2 OBI Reduction by Appling M-sequence Code 33
3-3 OBI Reduction by Appling Walsh Code 34
3-4 OBI Simulation 41

Chapter 4. Compensation for simultaneous MAI and OBI Reduction 51

4.1 Compensation Scheme to Suppress MAI and OBI 51
4.2.Modified FBG Decoder for MAI and OBI Reduction 54
4.3 Guard Band Scheme to Suppress MAI and OBI 57

Chapter 5. Conclusions 62

Reference 64

Appendix 68
[1]. M. Nazarathy, W.V. Sorin, D.M. Baney, and S.A. Newton, “Spectral analysis of Optical Mixing Measurements,” Journal of Lightwave Technology, vol. 7, no. 7, pp. 1083-1096,July 1989.
[2]. Desem, C., “Optical Interference in Subcarrier Multiplexed Systems with Multiple Optical Carriers,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 7, pp. 1290-1295, July 1990.
[3]. Shankaranarayanan, N.K., S.D. Elby, and K.Y. Lau, “WDMA/Subcarrier FDMA Lightwave Networks: Limitations due to Optical Beat Interference,” Journal of Lightwave Technology,vol. 9, no. 7, pp. 931-943, July 1991.
[4]. Banat, M.M. and M. Kavehrad, “Effect of Laser Direct Intensity Modulation Index on Optical Beat Interference in Subcarrier Multiplexed Wavelength Division Multiple Access Networks,” IEEE Trans. on Communications, vol. 4323, no. 2/3/4, pp. 1636-1643, Feb-March-April 1995..
[5]. Hsiao, C.C., B.H. Wang, and W.I. Way, “Multiple Access in the Presence of Optical-Beat and Co-Channel Interference Using Walsh-Code-Based Synchronized CDMA Technique,” IEEE Photonics Technology Letters, vol. 9, no. 8, pp. 1173-1175, August 1997.
[6]. Wang, B.H., C.C. Hsiao, and W.I. Way, “Suppression of optical beat interference using synchronised CDMA technique and in-band clipping carrier,” Electronics Letters, vol. 33, no. 22, pp. 1888-1890, October 1997.
[7]. Jawad A. Salehi, “Code division multiple-access technique in optical fiber networks -- Part I : Fundamental Principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
[8]. Griffin, R.A., D.D. Sampson, and D.A. Jackson, “Coherence coding for photonic code- division multiple access networks,” Journal of Lightwave Technology, vol. 13, no. 9,pp. 1826-1837, September 1995.
[9]. Kavehrad, M. and D. Zaccarin, “Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, March 1995.
[10]. Zaccarin, D. and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photonics Technology Letters, vol. 4, no. 4, pp. 479-482, April 1993.
[11]. Huang, J.F. and D.Z. Hsu, “Fiber-Grating-Based Optical CDMA Spectral Coding with Nearly Orthogonal M-sequence Codes,” IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1252-1254, September 2000.
[12]. Tancevski, L. and L.A. Rusch, "Impact of the beat noise on the performance of 2-D optical CDMA systems," IEEE Comm. Lett., vol. 4, no. 8, pp. 264 – 266, August 2000.
[13]. Woodward, S.L., X. Lu, T.E. Darcie, and G.E. Bodeep, “Reduction of Optical-Beat Interference in Subcarrier Networks,” IEEE Photonics Technology Letters, Vol. 8, No. 5, pp. 694-696, August 1996.
[14]. Wen-Piao Lin, “Reducing Multiple Optical Carrier Interference in Broad-Band Passive Optical Network,” IEEE Photonics Technology Letters, vol. 9, no. 3, pp. 368-370, March 1997 [15].R. D. Feldman. T. H. Wond “effect of Optical Beat Interference on the Dynamic Range of a Subcarrier Multiple Access Passive Optical Network Using Fabry-Perot Lasers” Journal of Lightwave Technology, vol, 14No. 5 May 1996.
[15] Asatani. “Nonlinearity and its compensation of semiconductor laser diodes for analog intensity modulation system”, IEEE Trans Communications, COM-28. 2,pp 297-300,1980.
[16] C. H. Cox Ⅲ, G. E. Betts, L. M. Johnson,“An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,”IEEE Trans. Microwave Theory and Tech. Vol. 38, pp.501-509, 1990.
[17] M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan,“Progress in externally modulated AM CATV transmission systems,”IEEE J. Lightwave Technol., vol. 11, no. 1, pp. 82-105, 1993.
[18] Mohammad M. Banat, and M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudo-random phase modulation”, Journal of Lightwave Technology, Vol. 12, No. 10, pp. 1863-1868, October 1994.
[19] F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical orthogonal codes: design, analysis, and applications”, IEEE Trans. on Inform. Theory, vol. 35, no. 3, pp. 595-604, May 1989
[20] H. Fathallah, L.A. Rusch, and S. LaRochelle, “Passive Optical Fast Frequency-Hop CDMA Communications System”, IEEE J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, March 1999.
[21] L.R. Chen, S.D. Benjamin, P.W.E. Smith and J.E. Sipe, “Applications of Ultrashort Pulse Propagation in Bragg Gratings for Wavelength Division Multiplexing and Code Division Multiple Access”, IEEE J. Quantum Electronics, vol. 34, no. 11, pp. 2117-2129, November 1998.
[22]J.A. Salehi, “Code-Division Multiple-Access Techniques in Optical Fiber Networks--Part I: Fundamental Principles,” IEEE Trans. on Commun., vol. 37, no. 8, pp. 824-833, August 1989.
[23] J.A. Salehi, and C.A. BRACKETT, “ Code Division Multiple-Access Techniques in Optical Fiber Networks - Part II:Systems Performance Analysis” IEEE Trans. Communi., vol. 37, no. 8, pp.834-842, August 1989.
[24] J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent Ultrashort Light Pulse Code-Division Multiple- Access Communication Systems,” IEEE J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990
[25] R. Papannareddy and A.M. Weiner, “Performance Comparison of Coherent Ultrashort Light Pulse and Incoherent Broadband CDMA Systems,” IEEE Photonics Techn. Lettr., vol. 11, no. 12, pp. 1683-1685, December 1999
[26] Huang, J.F. and D.Z. Hsu, “Photonic CDMA Networking with Spectrally Pseudo-Orthogonal Coded Fiber Bragg Gratings,” IEICE Trans. Communication, vol. E83-B, no. 10, pp. 2331-2340, October 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔