跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖能通
研究生(外文):Neng-Tung Liao
論文名稱:高速滾珠軸承之運動接觸機制與疲勞壽命分析
論文名稱(外文):Analyses of Mechanisms and Fatigue Life in a High-Speed Ball Bearing
指導教授:林仁輝
指導教授(外文):Jen-Fin Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:193
中文關鍵詞:不對心疲勞壽命接觸角滾珠軸承
外文關鍵詞:misalignmentball bearingcontact anglecagefatigue life
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1150
  • 評分評分:
  • 下載下載:345
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

本研究的主要目的:在於提出一個簡易、快速、有效率的新方法以研究滾珠軸承的運動機構與疲勞壽命。在此研究與以往最大不同的方式是:建立滾珠軸承三維的數學幾何模型,由已知軸承的總變形量透過幾何模型而解得許多以往不易計算甚至無法解得的軸承重要參數,例如滾珠與內外環之間的接觸角。
接觸角是研究在軸承內部滾珠與環之間的運動機制以及正向力分布最重要的基本參數。然而,在過去關於滾珠軸承的研究中,不論滾珠軸承的轉速是高或低,在承受徑向負荷時,從未曾計算出在滾珠與內外環之間的接觸角隨位置角而變化的情況。甚至關於高速滾珠軸承在承受徑向負荷時,以往所提出的研究方法也是非常難解,此時在滾珠軸承內部,所有與接觸角相關的參數都是非軸對稱(隨位置角而變化)。
本文將以簡單的軸承幾何關係,先忽略離心力,進而考慮離心力的效應,建立軸承總變形量與內外環曲面的代數方程式、力與變形的關係式、合力平衡方程式。由已知軸承之總軸向變形與總徑向變形及其保持器的轉速,解得內外環與滾珠之間任意一位置角的正向力、接觸角和變形量,以求得軸承所受的軸向與徑向總力。由滾珠所受的離心力與軸向分力的比值,可以分析軸承是否發生滑溜的狀況,以調整可變的參數,來觀察可減少滑溜的發生的各種可能性。並且建立環與滾珠之間的相對滑動速度之數學模式,以分析環與滾珠之接觸滑動情形。進一步試著探討軸承內部滾珠與環之間的滑動行為,擴展至研究滾珠軸承在高速運轉時考慮有油膜潤滑的狀況下,分析軸承內部接觸面滑動產生的熱所造成之溫升效應。最後將應用L-P疲勞壽命模型做為計算基礎並運用Weibull 模式以及本論文使用的模型之研究結果,提出另一計算軸承疲勞壽命的方法。
Abstract

The major purpose of this thesis is to provide a new, simple, rapid and effective method to study the mechanism and fatigue life in a ball bearing. The main difference between present and past studies is the method of solving the parameters of a ball bearing. Parameters not solved in past studies such as the contact angles can be solved by the present method of constructing a three dimensional geometry of a ball bearing based on known total deformations of the ball bearing.
The contact angle is one of the most important parameters in analyzing the mechanism of the normal force between the ball and the inner or outer raceways. Nevertheless, in past studies on ball bearings, the various contact angles between the balls and the raceways have never been calculated, respective of the operating angular speed of a ball bearing. All parameters and contact angles are on a non-axial symmetry, hence it is very difficult to solve using the past methods of bearing applied radial loads.
This thesis will provide a simple geometry relationship of a ball bearing, to construct the algebraic equations between the total deformations and the raceways, the relationship of the normal forces and the deformations in ball bearing, and the resultant force balance equations. Through the geometric analysis of a ball bearing and the force balance, several parameters can be easily obtained, like: the normal forces acting on the contact points; the contact angle at either the inner or the outer raceways that vary with the bearing position angles; bearing stiffness in the axial and radial directions that vary with the cage’s angular velocity, etc. Using Hirano’s criterion, the conditions for the proper choice of the total deformations in two directions can be identified in order to avoid bearing skidding.
The slip is analyzed under the circumstances of outer raceway control and oil lubrication. The results indicate that the sliding behavior cannot be avoided at the inner raceway so long as a radial load is applied. Under the condition of controlling the outer raceway temperature, the thermal deformations of all components of a ball bearing are taken into account in the calculations of bearing performances. Finally, to apply the L-P model, Weibull’s model, and the present model for computation of the bearing fatigue life, the effect of variable contact angles on the fatigue life of a ball bearing is thus investigated. The influence on the fatigue life due to the inclusion of ball life can be evaluated at various operating conditions.
滾珠軸承之運動機構與疲勞壽命分析
第一章 緒論
第二章 滾珠軸承之幾何分析
第三章 高速與低速滾珠軸承分析
第四章 滾珠軸承之不對心分析
第五章 滾珠與內環之接觸滑動分析及高速軸承之溫度效應
第六章 高速軸承之疲勞壽命分析
第七章 結論
參考文獻

1.Dowson, D., “History of Tribology,” 2nd ed., Longman, New York (1999).
2.Hertz, H., “The Contact of Elastic Solids,” J. Reine Angew. Math., 92, 156-171 (1881).
3.Stribeck, R., “Ball Bearing for Various Loads,” Trans. ASME 29, 420-463 (1907).
4. , H., “The Load Distribution within Ball and Roller Bearings under Given External Radial and Axial Load,” Teknisk Tidskrift, Mek., h.9 (1933).
5.Jones, A. B., “A General Theory for Elastically Constrained Ball and Radial Roller Bearings under Arbitrary Load and Speed Conditions,” Vol. 82, pp. 309-320 (1960).
6.Rumbarger, J., “Thrust Bearings with Eccentric Loads,” Machine Design. (1962).
7.Liao, N. T. and Lin, J. F., “A New Method for the Analysis of Deformation and Load in a Ball Bearing with Variable Contact Angle,” ASME, Journal of Mechanical Design, Vol. 123, June, pp. 304-312 (2001).
8.Jones, A. B., “Analysis of Stress and Deflections,” New Departure Engineering Data, Bristol, Conn. (1946).
9.Harris, T. A., “The Effect of Misalignment on the Fatigue Life of Cylindrical Roller Bearings Having Crowned Rolling Members,” ASME, Journal of Lubrication Technology, pp. 294-300 (1969).
10.Harris, T. A., “An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings,” ASME Journal of Lubrication Technology, Vol. 93, pp. 17-24 (1971).
11.Meyer, L. D., Ahlgren, F. F., and Weichbrodt, B., “Analytic Model for Ball Bearing Vibrations to Predict Vibration Response to Distributed Defects,” American Society of Mechanical Engineers (Paper) Sep 10-12 n79-DET-87 (1979).
12.Yoshioka, T., and Okamoto, J., “Effect of Misalignment on the Life of Deep Groove Ball Bearings,” Journal of Japan Society of Lubrication Engineers, Vol. 25, n7, pp. 466-472 (1980).
13.Berkovich, M. S., “Life of Rolling Bearings under Conditions of Axial Misalignment of Their Races,” Soviet Engineering Research, Vol. 3, n10, pp. 3-5 (1983).
14.Jones, A. B., “Ball Motion and Sliding Friction in Ball Bearings,” ASME, Journal of Basic Eng. Vol. 81, pp. 1-12 (1959).
15.Hirano, F., “Motion of a Ball in Angular-Contact Ball Bearing.” ASLE Trans., pp. 425-434 (1965).
16.Harris, T. A., “An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings,” ASME, Journal of Lubrication Technology, Vol. 93, pp. 17-24 (1971).
17.Harris, T. A., “Ball Motion in Thrust Loaded Angular Contact bearings with Coulomb Friction,” ASME, Journal of Lubrication Technology, Series F, Vol. 95, pp. 106-108 (1971).
18.Kannel, J. W., Walowit, J. A., “Simplified Analysis for Tractions between Rolling-Sliding Elastohydrodynamic Contacts,” ASME, Journal of Lubrication Technology, pp. 39-46 (1971).
19.Gupta, P. K., “Transient Ball Motion and Skid in Ball Bearings,” ASME, Journal of Lubrication Technology, pp. 261-269 (1975).
20.Hamrock, B. J., and Dowson, D., ” Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III – Fully Flooded Results,” ASME, Journal of Lubrication Technology, Vol. 99, no. 2, pp. 264-276 (1977).
21.Boness, R. J., “Minimum Load Requirements for the Prevention of Skidding in High Speed Thrust Loaded Ball Bearings,” ASME, Journal of Lubrication Technology, Vol. 103, pp. 35-39 (1981).
22.Polawski, J.V., Atwell, D.R., Lubas, M.J., and Odessky, V., “Predicting steady-state temperature, life, skid, and film thickness in a greased preloaded hybrid ball bearing,” ASME, Journal of Engineering for gas turbines and power, Vol. 118, pp. 443-448 (1996).
23.Yovanovich, M.M., “Analysis and Experimental Investigation on the Thermal Resistance of Angular Contact Instrument Bearings,” MIT Instrumentation Laboratory, Cambridge, MA (1967).
24.Chang, H.S., “A Numerical Solution to the Elastohydrodynamic Film Thickness in an Elliptical Contact,” ASME, Journal of Lubrication Technology, vol. 92, no. 1, pp. 155-162 (1970).
25.Houpert, L., “Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings,” ASME, Journal of Tribology, Vol. 107, pp.234-240 (1985).
26.Spence, E.W., and Kaminski, D.A., “Thermal Evaluation of a Dry Nonrotating Thin Section Contact Bearing,” ASME, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 610-614 (1996).
27.Lundberg, G., and Palmgren, A., “Dynamic Capacity of Rolling Bearings,” Acta Polytech. Mech. Eng. Ser 1, R.S.A.E.E., No. 3, p.7 (1947).
28.Weibull, W., “A Statistical Representation of Fatigue Failure in Solids,” Acta Polytech. Mech. Eng. Ser 1, R.S.A.E.E., No. 9, p. 49 (1949).
29.Lundberg, G. and Palmgren, A., “Dynamic Capacity of Roller Bearings,” Acta Polytech. Mech. Eng. Ser 2, R.S.A.E.E., No. 4, p. 96 (1952).
30.“Load Ratings and Fatigue Life for Ball Bearings,” ANSI/AFBMA 9-1990, The Anti-Friction Bearing Manufactures Association, Washington, DC, (1990).
31.Chiu, Y.P. Tallian, T.E., McColl, J.I., and Martin, J.A., “A Mathematical Model of Spalling Fatigue Failure in Rolling Contact,” ASLE, Trans., 12, pp 106-116, (1969).
32.Chiu, Y.P. Tallian, T.E., McColl, J.I., and Martin, J.A., “An Engineering Model of Spalling Fatigue Failure in Rolling Contact,” Wear, 17, pp 433-446, (1971).
33.Bamberger, E.N., Harris, T.A., Kacmarsky W., Moyer C., Parker R., Sherlock J., and Zaretsky E., “Life Adjustment Factors for Ball and Roller Bearings- An Engineering Design Guide,” ASME, New York, (1971).
34.Ioannides, E., and Harris, T.A., “A New Fatigue Life Model for Rolling Bearings,” ASME, Transactions, Journal of Tribology, 107, 3, pp.367-378, (1985).
35.Zaretsky, E.V., “STLE Life Factors for Rolling Bearings,” STLE, SP-34, Park Ridge, IL, (1992).
36.Yu, W.K. and Harris, T.A., “A New Stress-Based Fatigue Life Model for Ball Bearings,” STLE, Tribology Transactions, Vol. 44, pp. 11-18, (2001).
37.Harris, T. A., “Rolling Bearing Analysis,” John Wiley & Sons, New York, 4th Ed., (2000).
38.Kannel, J.W., and Walowit, J. A., “Simplified Analysis for Tractions between Rolling-Sliding Elastohydrodynamic Contacts,” ASME, Journal of Lubrication Technology, pp. 39-46 (1971).
39.Hamrock, B.J., and Dowson, D., “Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III – Fully Flooded Results,” ASME, Journal of Lubrication Technology, Vol. 99, no. 2, pp. 264-276 (1977).
40.Gupta, P.K., “Traction Coefficients for Some Solid Lubricants for Rolling Bearing Dynamics Modeling,” STLE, Tribology Transactions, Vol. 43 pp. 647-652 (2000).
41.Ralls, K.M., Courtney, T.H., and Wulff, J., “An Introduction to Materials Science and Engineering,” John Wiley & Sons, New York, p. 421 (1976).
42.Stachowiak, G.W. and Batchelor, A.W., “Engineering Tribology,” Elsevier, pp. 391-397 (1993).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top