跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:于劍平
研究生(外文):Jiahn-Piring Yur
論文名稱:放電加工表面特性之研究
論文名稱(外文):Surface integrity and characteristics of electro-discharge machined surface
指導教授:李驊登李驊登引用關係
指導教授(外文):H.-T. Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:163
中文關鍵詞:田口方法放電加工
外文關鍵詞:electro-discharge machiningTaguchi method
相關次數:
  • 被引用被引用:44
  • 點閱點閱:713
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
本論文主要對放電加工後之表面完整性作定性與定量實驗的分析:首先利用田口式實驗分析法,對11個放電加工參數尋求影響放電加工表面完整性的主要影響參數;接著以此主要影響參數作表面特性的全因素實驗選用工具鋼(SKD11、SKD61)、碳鋼(S45C)、低合金鋼(SCM440)、及不�袗�(SUS304L)等材料,找出加工參數與表面形貌、擴孔量、表面粗糙度、白層厚度、裂縫之關係;並進行迴歸分析求出經驗公式,提供給放電加工適應控制時之參考。
經田口分析結果發現:影響擴孔量的主要加工參數為放電電流,其次是放電持續時間;放電電流、放電持續時間及工件材料,為影響表面粗糙度的主要參數;白層厚度的主要影響參數為放電電流,其次為放電持續時間。因此放電加工表面完整性是受到放電加工參數條件及材料物理性質之兩大因素影響,故放電加工表面特性可表示成放電電流(IP)、放電持續時間(τon)及工件材料之物理性質(λ)的函數:S.C.EDM = 。利用此結果進行全因素實驗及複變數迴歸分析求出經驗公式,在放電電流於3至20安培與放電持續時間於10至200微秒之範圍中,表面形貌及放電痕大小與放電電流及放電持續時間有關;擴孔量可用經驗公式: 及無因次式 表示;表面粗糙度可用經驗公式: 及無因次式 表示;白層厚度可用經驗公式: 及無因次式 表示,或 及無因次式 表示;工件材料放電加工後表面裂縫生成與熱傳導係數有關,熱傳導係數愈大者,較不易生成裂縫。材料之熱傳係數也會影響裂縫臨界線之斜率大小,當熱傳係數愈大時,則裂縫臨界線之斜率(S)就愈大,兩者並成一線性關係,其關係式為: 。裂縫臨界線下的面積(E)與熱傳係數(K)亦為一線性關係,其關係式為: 。本研究所得之經驗公式及關係式可應用至工業界中作為放電加工適應控制及自動化發展之基礎。
ABSTRACT
In this research, the surface integrity of EDM is mainly discussed and analyzed qualitatively and quantitatively. First, the Taguchi method (TM) was employed to evaluate the main factors influencing the EDMed surface integrity and characteristics among eleven EDM process parameters. With an aim to minimize the formation of defects and obtain optimum working conditions of EDM. Based on the main influencing factors of electro-discharge machining, the full factorial experiment was employed to find the relationships between EDM parameters and surface topography, hole-enlargement (HE), surface roughness (SR), white layer thickness (WLT), and surface cracks for six steel materials, such as tool steel (SKD11, SKD61), carbon steel (S45C), low-alloy steel (SCM440), and stainless steel (SUS304L). The analysis of regression was employed and then the empirical equations were obtained as the reference of adaptive control for EDM.
The results of TM show that the main parameters are pulse current and pulse-on duration for HE and WLT, pulse current, pulse-on duration and material for SR. However the degree of contributions of these main influencing factors are different. The surface characteristics are mainly the function of pulse current (Ip), pulse-on duration (τon) and the physical property of material (λ):S.C.EDM = . Based on the results of the full factorial experiments and regression analysis, the surface morphology and the size of craters on EDMed surface are related to the pulse current and the pulse-on duration. For the pulse current of 3A~20A and the pulse-on duration of 10~200μsec, the empirical equation of regression is and dimensionless empirical equation is for HE, and for SR, and and for WLT. Meanwhile, the WLT can express the product of pulse current and pulse-on duration: , and the dimensionless empirical equation is . The formation of surface crack is relative to the coefficient of thermal conduction. The larger the thermal conductivity give rise to less surface cracks. There exists a critical line for cracking and its slope (S) is related to (K) by the following linear relationship: . The area of the crack critical line (E) represents the critical energy for cracking, and is also related to the thermal conductivity by a linear relationship: . In this investigation, the empirical equations of regression have high potential for practical applications and can be provided as the basis of EDM adaptive control and automation development for industry.
總目錄
摘要 I
英文摘要 III
致謝 V
總目錄 VI
表目錄 VIII
圖目錄 IX
符號 XVI

一、前言 1
1.1 概論 1
1.2 研究動機與目的 2

二、文獻回顧 5
2.1 放電加工原理 5
2.2 放電現象物理模式建立 8
2.3 放電參數與表面特性 18
2.4 放電加工表面缺陷 33

三、實驗方法與步驟 43
3.1實驗流程規劃 43
3.2工件及電極材料之製備 44
3.3田口式實驗法與放電加工參數之選擇 46
3.4全因素實驗規劃 49
3.5實驗設備 50

四、結果與討論 57
4.1放電加工表面特性之田口分析 57
4.1.1擴孔量分析 57
4.1.2討論 61
4.2放電加工參數對表面形貌之影響 68
4.3放電加工參數對擴孔量之影響分析 79
4.4放電加工參數對表面粗糙度之影響分析 96
4.5放電加工參數對白層厚度之影響分析 110
4.6放電加工參數對裂縫之影響分析 134

五、結論與建議 147
5.1結論 147
5.2未來研究方向與建議 149

參考文獻 150
自述 163
參 考 文 獻
[1]董光雄, “放電加工”, 復文書局, 1988.
[2]張渭川, “放電加工的結構與實用技術”, 全華科技圖書公司, 1993.
[3]Petrofes, N. F. and A. M. Gadalla, “Processing aspects of shaping advanced materials by electrical discharge machining”, Materials and Manufacturing Processes, Vol.3, No.1, pp.127-157, 1988.
[4]Dibitonto, D. D., P. T. Eubank, M. R. Patel, and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model”, Journal of Applied Physics, Vol.66, No.9, pp.4095-4103, 1989.
[5]Jilani, S. T. and P. C. Pandey, “An analysis of surface erosion in electrical discharge machining”, Wear, Vol.84, pp.275-284, 1983.
[6]Benzerga, L., C. Lhiaubet, and R. M. Meyer, “Improvement of a proposed model for heat conduction in an electrode submitted to an electric discharge: application to the indirect determination of the anodic and cathodic voltage drops”, Journal of Applied Physics, Vol.58, No.1, pp.604-606, 1985.
[7]Patel, Mukund R., M. A. Barrufet, P. T. Eubank, and D. D. Dibitont, “Theoretical models of electrical discharge machining process II. The anode erosion model”, Journal of Applied Physics, Vol.66, No.9, pp.4104-4111, 1989.
[8]Erden, A., F. Arinc, and M. Kogmen, “Comparison of mathematical models for electric discharge machining”, Journal of Materials Processing & Manufacturing Science, Vol.4, pp.163-175, 1995.
[9]Bozkurt, B., A. M. Gadalla, and P. T. Eubank, “Simulation of erosion in a single discharge EDM process”, Materials and Manufacturing Processes, Vol.11, No.4, pp.555-563, 1996.
[10]Karthikeyan, R., P. R. Lakshmi Narayanan, and R. S. Naagarazan, “Mathematical modeling for electric discharge machining of aluminium-silicaon carbide particulate composites”, Journal of Materials Processing Technology, Vol.87, pp.59-63, 1999.
[11]Singh, A. and A. Ghosh, “A thermo-electric model of material removal during electric discharge machining”, International Journal of Machine Tools & Manufacture, Vol.39, pp.669-682, 1999.
[12]Greene, J. E. and J. L. Guerrero-Alvarez, “Electro-erosion of metal surfaces”, Metallurgical Transactions, Vol.5, No.3, pp.695-706, 1974.
[13]Massarelli, L. and M. Marchionni, “Morphology of spark-affected surface layers produced on pure iron and steels by electro-discharge machining”, Metals Technology, pp.100-105, 1977.
[14]Rajurkar, K. P. and S. M. Pandit, “Quantitative expressions for some aspects of surface integrity of electro discharge machined components”, Journal of Engineering for Industry, Transactions of the ASME, Vol.106, pp.171-177, 1984.
[15]Mamalis, A.G., G.C. Vosniakos, and N.M. Vaxevanidis, "Macroscopic and microscopic phenomena of electro-discharge machined steel Surfaces: an experimental investigation", Journal of Mechanical Working Technology, Vol.15, pp.335-356, 1987.
[16]Lee, L.C., L.C. Lim, V. Narayanan, and V.C. Venkatesh, "Quantification of surface damage of tool steels after EDM", International Journal of Machine Tools Manufacturing, Vol.28, No.4, pp.359-372, 1988.
[17]Bormann, R., “Understanding die-sinking EDM surface integrity”, Carbide and Tool Journal, Vol.20, No.6, pp.12-16, 1988.
[18]Merdan, M.A.E.-R. and R.D. Arnell, “Surface integrity of a die steel after electrodischarge machining: (I) structure, composition, and hardness”, Surface Engineering, Vol.5, No.2, pp.158-164, 1989.
[19]Thomson, P. F., “Surface damage in electrodischarge machining”, Material Science and Technology, Vol.5, pp.1153-1157, 1989.
[20]Mohri, N., N. Saito, M. Suzuki, T. Takawashi, and K. Kobayashi, “EDM by powder suspended working fluid”, Proceeding of International Symposium for Electro-machining, The Japan Society of Electrical- machining Engineers, pp.5-8, 1989.
[21]Lim, L. C., L. C. Lee, Y. S. Wong, and H. H. Lu, “Solidification microstructure of electrodischarge machined surfaces of tool steels”, Material Science and Technology, Vol.7, pp.239-248, 1991.
[22]Lee, L. C., L. C. Lim, Y. S. Wong, and H. S. Fong, "Crack susceptibility of electro-discharge machined surfaces", Journal of Materials Processing Technology, Vol.29, pp.213-221, 1992.
[23]Lee, L. C., L. C. Lim, and Y.S. Wong, “Towards crack minimisation of EDMed surfaces”, Journal of Materials Processing Technology, Vol.32, pp.45-54, 1992.
[24]Masuzawa, T., Xiaoxin Cui, and Nobuyuki Taniguchi, “Improved jet flushing for EDM”, Annals of the CIRP, Vol.41, pp.239-242, 1992.
[25]Tomlinson, W. J. and J. R. Adkin, “Microstructure and properties of electrodischarge machined surfaces”, Surface Engineering, Vol.8, No.4, pp.283-288, 1992.
[26]Mohri, N., N. Saito, and Y. Tsunekawa, “Metal surface modification by electrical discharge machining with composite electrode”, Annals of the CIRP, Vol.42, pp.219-222, 1993.
[27]Saito, N. and N. Mohri, “Strength deterioration of sintered TiB2 produced by EDM and its recovering technology’, Journal of the Japan Society of Precision Engineering, Vol.59, No.2, pp.293-298, 1993.
[28]Wong, Y. S., L. C. Lim, and L. C. Lee, “Effect of flushing on electro-discharge machined surfaces”, Journal of Materials Processing Technology, Vol.48, pp.299-305, 1995.
[29]Ming, Q. Y. and L. Y. He, “Powder-suspension dielectric fluid for EDM”, Journal of Materials Processing Technology, Vol.52, pp.44-54, 1995.
[30]李驊登, 楊永名, 葉麗雅, 邴兆齊, 陳中城, “放電加工參數對加工表面缺陷及粗糙度之影響分析”, Chinese Journal of Materials Science, Vol.28, No.4, pp.270-278, 1996.
[31]莊水旺 和 顏瑞宏, “放電加工對SKD61熱間工具鋼表面性質之影響”, 中國機械工程學會第十三屆學術研討會, pp.437-444, 1996.
[32]Vaseekaran, S. and C. A. Brown, “Single discharge, spark erosion in TiB2 and zinc Part I : Experimental”, Journal of Materials Processing Technology, Vol.58, pp.70-78, 1996.
[33]Soni, J. S. and G. Chakraverti, “Experimental investigation on migration of material during EDM of die steel”, Journal of Materials Processing Technology, Vol.56, pp.439-451, 1996.
[34]Zhang, J. H., T. C. Lee, and W. S. Lau, “Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic”, Journal of Materials Processing Technology, Vol.63, pp.908-912, 1997.
[35]Tsai, D. C., F. P. Chang, and K. T. Chiang, “Optimization of processing parameters and analysis of experimental formula for electric discharge machining of an electro-conductive ceramic”, Journal of Materials Processing Technology, Vol.12, No.4, pp.569-575, 1997.
[36]Zbigniew, S. R. and J. Czechowski, “Manufacture and properties of Al2O3-TiN particulate composites”, Journal of the European Ceramic Society, Vol.18, pp.373-380, 1997.
[37]Rebelo, J.C., A. Morao Dias, D.Kremer, and J.L. Lebrun, “Influence of EDM pulse energy on the surface integrity of martensitic steels”, Journal of Materials Processing Technology, Vol.84, pp.90-96, 1998.
[38]Lin, J. L., K. S. Wang, B. H. Yan, and Y. S. Tarng, “An investigation into improving worn electrode reliability in the electrical discharge machining process”, International Journal of Manufacturing Technology, Vol.16, pp.113-119, 2000.
[39]Trueman, C. S. and J. Huddleston, “Material removal by spalling during EDM of ceramics”, Journal of the European Ceramic Society”, Vol.20, pp.1629-1635, 2000.
[40]Rebelo, J. C., A. M. Dias, R. Mesquita, P. V.assalo, and M. Santos, “An experimental study on electro-discharge machining and polishing of high strength copper-beryllium alloys”, Vol.103, pp.389-397, 2000.
[41]Wang, P. J. and K. M. Tsai, “Semi-empirical model on work removal and tool wear in electrical discharge machining”, Journal of Materials Processing Technology, Vol.114, pp.1-17, 2001.
[42]Tsai, K. M. and P. J. Wang, “Semi-empirical model of surface finish on electrical discharge machining”, International Journal of Machine Tools & Manufacture, Vol.41, pp.1455-1477, 2001.
[43]Tsai, K. M. and P. J. Wang, “Prediction on surface finish in electrical discharge machining based upon neural network models”, International Journal of Machine Tools & Manufacture, Vol.41, pp.1385-1403, 2001.
[44]Tsai, K. M. and P. J. Wang, “Comparisons of neural network models on material removal rate in electrical discharge machining”, Journal of Materials Processing Technology, Vol.117, pp.111-124, 2001.
[45]蔡國銘 和 王培仁, ” 以不同類神經網路建立放電加工性能模式之比較研究”, 第十六屆機械工程研討會論文, pp.250-257, 1999.
[46]Che Haron, C. H., B. Md. Deros, A. Ginting, and M. Fauziah, “Investigation on the influence of machining parameters when machining tool steel using EDM”, Journal of Materials Processing Technology, Vol.116, pp.84-87, 2001.
[47]Lee, S. H. and X. P. Li, ”Study of the machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide”, Journal of Materials Processing Technology, Vol.115, pp.344-358, 2001.
[48]Llanes, L., E. Idanez, E. Martinez, B.Casas, and J. Esteve, “Influence of electrical discharge machining on the sliding contact response of cemented carbides”, International Journal of Refractory Metals & Hard Materials, Vol.19, pp.35-40, 2001.
[49]Lin, Y. C., B. H. Hwa, and F. Y. Huang, “Surface modification of Al-Zn-Mg aluminum alloy using the combined process of EDM with USM”, Journal of Materials Processing Technology, Vol.115, pp.359-366, 2001.
[50]Guu, Y. H. and H. Hocheng, “Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating”, Materials Science and Engineering A, Vol.318, pp.155-162, 2001.
[51]Petrofes, F. N. and A. M. Gadalla, “Electrical discharge machining of advanced ceramics”, Ceramic Bulletin, Vol.67, No.6, pp.1048-1049, 1988.
[52]Mamalis, A. G., N. M. Vaxevanidis, and D. I. Pantelis, “On the electrodischarge machining of ceramic plasma-sprayed steel plates”, Annals of the CIRP, Vol.41, pp.235-238, 1992.
[53]Mohri, N., Y. Fukuzawa, T. Tani, N. Saito, and K. Furutani, “Assisting electrode method for machining insulating ceramics”, Annals of the CIRP, Vol.45, pp.201-204, 1996.
[54]Gadalla, A. M. and W. Tsai, “Electrical discharge machining of Tungsten Carbide-Cobalt composites”, Journal of American Ceramic Society, Vol.72, No.8, pp.1396-1401, 1989.
[55]Hocheng, H., W. T. Lei and H. S. Hsu, “Preliminary study of material removal in electrical-discharge machining of SiC/Al”, Journal of Materials Processing Technology, Vol.63, pp.813-818, 1997.
[56]Lau, W. S., T. M. Yue, T. C. Lee, and W. B. Lee, ”Un-conventional machining of composite materials”, Journal of Materials Processing Technology, Vol.48, pp.199-205, 1995.
[57]Rozenek, M., J. Kozak, L. Dabrowski, and K. Lubkowski, “Electrical discharge machining characteristics of metal matrix composites”, Journal of Materials Processing Technology, Vol.109, pp.367-370, 2001.
[58]Yarlagadda, P. K. D. V., P. Christodoulou, and V. S. Subramanian, “Feasibility studies on the production of electro-discharge machining electrodes with rapid prototyping and the electroforming process”, Journal of Materials Processing Technology, Vol.89-90, pp.231-237, 1999.
[59]Rennie, A. E. W., C. E. Bocking, and G. R. Bennett, “Electroforming of rapid prototyping mandrels for electro-discharge machining electrodes”, Journal of Materials Processing Technology, Vol.110, pp.186-196, 2001.
[60]Samuel, M. P. and P. K. Philip, “Power metallurgy tool electrodes for electrical discharge machining”, International Journal of Machine Tools Manufacturing, Vol.37, No.11, pp.1625-1633, 1997.
[61]Zaw, H. M., J. Y. H. Fuh, A. Y. C. Nee, and L. Lu, “Formation of a new EDM electrode material using sintering techniques”, Journal of Materials Processing Technology, Vol.89-90, pp.182-186, 1999.
[62]Li, L., Y. S. Wong, J. Y. H. Fuh, and L. Lu, “Effect of TiC in copper-tungsten electrodes on EDM performance”, Journal of Materials Processing Technology, Vol.113, pp.563-567, 2001.
[63]Li, L., Y. S. Wong, J. Y. H. Fuh, and L. Lu, “EDM performance of TiC/copper-based sintered electrodes”, Material and Design, Vol.22, pp.669-678, 2001.
[64]Zhixin, J., Z. Jianhua, and A. Xing, “Study on a new kind of combined machining technology of ultrasonic machining and electrical discharge machining”, International Journal of Machine Tools Manufacturing, Vol.37, No.2, pp.193-199, 1997.
[65]Thoe, T. B., D. K. Aspinwall, and N. Killey, “Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy”, Journal of Materials Processing Technology, Vol.92-93, pp.323-328, 1999.
[66]Thoe, T. B., D. K. Aspinwall, and M. L. H. Wise, “Review on ultrasonic machining”, International Journal of Machine Tools Manufacturing, Vol.38, No.4, pp.239-255, 1998.
[67]Jeswani, M. L., “Effect of the addition of Graphite powder to Kerosene used as the dielectric fluid in electrical discharge machining”, Wear, Vol.70, pp.133-139, 1981.
[68]Wong, Y. S., L. C. Lim, I. Rahuman, and W. M. Tee, “Near-mirror-finish phenomenon in EDM using powder-mixed dielectric”, Journal of Materials Processing Technology, Vol.79, pp.30-40, 1998.
[69]Tzeng, Y. F. and C. Y. Lee, “Effect of powder characteristics on electrodischarge machining efficiency”, International Journal Manufacture Technology, Vol.17, pp.586-592, 2001.
[70]Furutani, K., A. Saneto, H. Takezawa, N. Mohri, and H. Miyake, “Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid”, Journal of the International Societies for Precision Engineering and Nanotechnology, Vol.25, pp.138-144, 2001.
[71]Fukuzawa, Y., Y. Kojima, E. Sekiguchi, and N. Mohri, “Surface modification of stainless steel by electrical discharge machining”, ISIJ International, Vol.33, No.9, pp.996-1002, 1993.
[72]Kagaya, K., Y. Oishi, and K. Yada, “Micro-electrodischarge machining using water as a working fluid-2: Narrow slit fabrication”, Precision Engineering, Vol.12, No.4, pp.213-217, 1990.
[73]Allen, D. M., H. J. A. Almond, J. S. Bhogal, A. E. Green, P. M. Logan, and X. X. Huang, “Typical metrology of micro-hole arrays made in stainless steel foils by two-stage micro-EDM”, Annals of the CIRP, Vol.48, pp.127-130, 1999.
[74]Rajurkar, K. P. and Z. Y. Yu, “3D micro-EDM using CAD/CAM”, Annals of the CIRP, Vol.49, pp.127-130, 2000.
[75]邴兆齊, "放電加工鑽孔法量測殘留應力之可行性分析", 成功大學機械工程研究所碩士論文, 1994.
[76]葉麗雅, "放電加工鑽孔法量測殘留應力之應用研究", 成功大學機械工程研究所碩士論文, 1995.
[77]楊永名, "放電加工參數與加工表面特性對量測殘留應力之影響評估"成功大學機械工程研究所碩士論文, 1996.
[78]李驊登, 楊永名, 于劍平, “放電加工表面特性之田口分析”, 第十三屆全國機械工程學術研討會, pp.429-436, 1996.11.
[79]于劍平 和 張仲卿, “加工液中鋁粉濃度對碳化鎢放電加工之影響”, 第十三屆全國機械工程學術研討會, pp.445-450, 1996.11.
[80]于劍平 和 張仲卿, “加工液添加鋁粉對碳化鎢(P15)放電加工之影響”, 第十二屆全國技術及職業教育研討會, 1997.05.
[81]Yur, J. P. and C. C Chang, “Characteristic analysis of the EDMed surface of tungsten carbide using Taguchi method”, International Conference on Precision Engineering 97’, pp.657-663, 1997.10.
[82]Lee, H. T. and J. P. Yur, “Optimization of EDM process parameters with Aluminum powder suspension in dielectric for Tungsten Carbide by Taguchi method”, Journal of the Chinese Society of Mechanical Engineers, Vol.22, No.6, pp.489~497, 2001.
[83]童文煥, “放電加工鑽孔白層與引進殘留應力之關連性研究”, 成功大學機械工程研究所碩士論文, 1998.
[84]林培欽, “放電加工鑽孔引進殘留應力之研究”, 成功大學機械工程研究所碩士論文, 1998.
[85]于劍平 和 李驊登, “放電加工表面殘留應力與加工參數關係之研究”, 第十四屆全國技術及職業教育研討會, 1999.05.
[86]于劍平 和 李驊登, “放電加工條件與白層厚度關連性之研究”, 第十四屆全國技術及職業教育研討會, 1999.05.
[87]戴子堯, “利用放電加工鑽孔法量測硬度層表面殘留應力”, 成功大學機械工程研究所碩士論文, 1999.
[88]李驊登, 戴子堯, 于劍平, ”利用放電加工法量測硬鍍層表面殘留應力”, 第十六屆全國機械工程學術研討會, 1999.12.
[89]李驊登 和 于劍平, “利用田口式實驗法研究放電加工之殘留應力”, 第十六屆全國機械工程學術研討會, 1999.12.
[90]于劍平 和 李驊登, “碳化鎢放電加工表面破壞特性”, 第六屆材料破壞科學學術研討會, 2000.03.
[91]李驊登 和 于劍平, “碳化鎢放電加工表面缺陷生成之研究”, 第十七屆全國機械工程學術研討會, 2000.12.
[92]許富銓, “放電加工鑽孔法量測殘留應力之校正研究”, 成功大學機械工程研究所碩士論文, 2000.
[93]李驊登, 許富銓, 于劍平, “放電加工鑽孔法量測殘留應力之校正研究”, 第十七屆全國機械工程學術研討會, 2000.12.
[94]于劍平 和 李驊登, “應用放電加工於應變規鑽孔法最適放電條件之研究”, 第十六屆全國技術及職業教育研討會, pp.267-276, 2001.04.
[95]許富銓, 于劍平, 李驊登, “以銅鎢電極進行小面積放電加工之表面特性研究”, 第十六屆全國技術及職業教育研討會, 2001.04.
[96]許多, “SKD11工具鋼殘留應力之放電加工鑽孔量測法研究”, 成功大學機械工程研究所碩士論文, 2001.
[97]李驊登, 許富銓, 于劍平, “以單瓣應變規配合應變規鑽孔法量測單軸殘留應力之可行性分析”, 第二十五屆全國力學會議,2001.12.
[98]李驊登, 許富銓, 于劍平, “放電加工表面裂縫之研究”, 第七屆材料破壞科學學術研討會, 2002.03.
[99]材料手冊(I)-鋼鐵材料, 中國材料科學學會,1983.
[100]黎正中譯, ”實驗設計與分析”, 高立圖書公司,1998.
[101]田口玄一 和 橫山巽子, “田口式品質工程講座4-品質設計的實驗計畫法”, 中國生產力中心, 1991.
[102]田口玄一 和 小西省三, “田口式品質工程講座3-品質評價的SN比”, 中國生產力中心, 1991.
[103]Taguchi, G., “Introduction to quality engineering”, Asian Productivity Organization, Tokyo, 1990.
[104]Taguchi, G., “Taguchi methods-research and development”, Quality Engineering Series Vol.1, ASI Press, USA, 1992.
[105]Taguchi, G., “Taguchi methods- signal-to-noise ratio for quality evaluation ”, Quality Engineering Series Vol.3, ASI Press, USA, 1991.
[106]Taguchi, G., “Taguchi methods-case studies from the U.S. and Europe”, Quality Engineering Series Vol.6, ASI Press, USA, 1989.
[107]Ross, P. J., “Taguchi techniques for quality engineering”, McGraw - Hill, New York, 1988.
[108]Peace, G. S., “Taguchi methods: A hand-on approach”, Addison- Wesley, Reading, MA, 1993.
[109]Bendell, A., J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry”, IFS Publications, UK, 1989.
[110]Roy, R. K., “A primer on Taguchi method”, Van Nostrand Reinhold, New York, 1990.
[111]Phadke, M. S., “Quality engineering using robust design”, Prentice Hall, 1989.
[112]Yang, W.H. and Y.S. Tarng, “Design optimization of cutting parameters for turning operations based on the Taguchi method”, Journal of Materials Processing Technology, No.84, pp.122-129, 1998.
[113]Jiang, M. and R. Komanduri, “Application of Taguchi method for optimization of finishing conditions in magnetic float polishing (MFP)”, Wear, No.213, pp.59-71, 1997.
[114]Liao, Y. S., J. T. Huang, and H. C. Su, “A study on the machining-parameters optimization of wire electrical discharge machining”, Journal of Materials Processing Technology, No.71, pp.487-493, 1997.
[115]Tarng, Y. S. and W. H. Yang, “Application of the Taguchi method to the optimization of the submerged arc welding process”, Materials and Manufacturing Processes, Vol.13, No.3, pp.455-467, 1998.
[116]Lin, J. L., K. S. Wang, B. H. Yan, and Y. S. Tarng, “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology, No.102, pp.48-55, 2000.
[117]Chen, S.L., B.H. Yan, and F.Y. Huang, “Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6Al-4V”, Journal of Materials Processing Technology, No.87, pp.107-111, 1999.
[118]Lee, H. T. and J. P. Yur, “ Characteristic analysis of EDMed surfaces using Taguchi approach”, Materials and Manufacturing Processes, Vol.15, No.6, pp.781-806, 2000.
[119]CNC放電加工機操作手冊, 億曜公司, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top