跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊仲霖
研究生(外文):Chung-Lin Yang
論文名稱:電子束銲接製程參數對690合金與304L不銹鋼異種銲接之影響
論文名稱(外文):The Influence of Electron Beam Welding Parameters on Dissimilar Welding of Alloy 690 and 304L Stainless Steel
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:112
中文關鍵詞:腐蝕試驗機械性質304L不□鋼690合金微觀組織異種銲接電子束銲接
外文關鍵詞:Mechanical ProperCorroison test304L Stainless SteelAlloy 690MicrostructureDissimilar WeldingEBW
相關次數:
  • 被引用被引用:9
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對核電廠反應爐中600合金管路與308不□鋼平板之異材銲接SCC破損案例,計劃以抗蝕性更佳的690合金取代600合金,而304L不□鋼取代308不□鋼,配合高能量密度與低入熱量特性的電子束銲接製程,分別進行的材料自體與異種對接銲,探討不同EBW銲接參數對於銲件微觀組織、機械性質與腐蝕行為所造成的影響。
實驗首先以BOP(bead on plate)方式,了解銲接參數對於3mm板厚的690合金與304L不□鋼穿透深度之影響,之後將評估所得貫穿參數,進行兩材料對接銲實驗與銲後銲件的分析研究。
BOP實驗結果顯示,材料的EBW穿透深度隨著入熱量的提昇而逐漸增加,當達到臨界貫穿條件時,銲件表面具有較佳完整性,此條件應為材料最佳自體對接銲之銲接參數。但實際對接銲接時,因對接縫的存在,BOP實驗所得參數利用於690合金與304L不□鋼自體對接銲接時,銲接參數需做小幅修改。
對接銲研究顯示,自體對接銲件微硬度值,因銲接參數入熱量變化不大而與母材相近。相對地,異種對接銲件受到母材稀釋量的不同造成合金成份有所差異,顯著地影響熔融區硬度表現,其中304L不□鋼稀釋量多時(高Fe低Ni),微硬度相較於母材呈現下降現象;而690合金稀釋量多銲件(高Ni低Fe),硬度與690母材相近。
抗拉強度之結果,690合金自體對接銲件抗拉強度比母材稍低,而304L自體對接銲具優良機械性質,抗拉強度高於母材。異種對接銲之高Ni低Fe含量的銲件,抗拉強度與690合金自體銲件接近。
對接銲件因EBW快速凝固作用,金相觀察顯示次晶組織非常細密,且無明顯偏析物出現,腐蝕試驗顯示抗IGC能力優良。其中690合金自體對接銲件僅次晶間有些微孔蝕出現,而304L自體對接銲件為沃斯田鐵次晶間的δ-肥粒鐵易受到腐蝕液的浸蝕較為明顯。異種對接銲件熔融區抗蝕能力受到合金成份的差異,腐蝕金相變化大,當304L稀釋量較多時,熔融區次晶晶界受到浸蝕而明顯顯現,690合金稀釋量多時,熔融區腐蝕金相出現部分孔蝕,抗蝕能力佳。
Regarding the SCC of alloy 600 tube and 308 SS plate dissimilar weldment at the reactor of nuclear power plant, in this study EBW is used to joint alloy 690 and 304L SS plates to replace the alloy 600 and 308 SS to get their autogenous and dissimilar weldments individually. The purpose of this study is to discuss the effect on microstructure, mechanical properties and corrosion behavior of these resulting weldments with different EBW parameter.
At first, the bead on plate (BOP) method is used to understand the effect on EBW penetration of 3mm alloy 690 and 304L SS plate resulting from different welding parameter. Then the parameters are evaluated and used to proceed with the alloy 690 and 304L SS plate autogenous and dissimilar welding.
The BOP experiments show that the EBW penetration is increased with increasing heat input. When the critical penetration condition is attained, the weldment surface is usually integrated, and the parameter of this condition is the best parameter for autogenous butt-welding. However, because of the plate-butt seam existing during autogenous butt-welding, the critical BOP parameters need a little correction to proceed with alloy 690 and 304L SS autogenous welding.
According to the butt-welding result, the microhardness of autogenous welding fusion zone is close to their basemetal, for the variation of parameter heat input is unobvious. Relatively, due to the basemetal dilution is diverse, the dissimilar welding fusion zone composition is different, and their hardness will change obviously. When 304L SS dilution in fusion zone is more, the hardness is lower than both basemetal; alloy 690 dilution is more, the hardness is near alloy 690 basemetal.
After tensile test, the tensile strength of alloy 690 autogenous weldment is little lower than alloy 690 basemetal. And 304L SS autogenous weldment have good mechanical property, for tensile strength is higher than 304L SS. Otherwise, when alloy 690 dilution is more in fusion zone, its weldment tensile strength is near alloy 690 autogenous one.
Owing rapid solidification of EBW, the subgrain organization of butt weldment is fine and microsegregation is unapparent to make IGC resistant ability well. According to the result of Modified Huey test, there is light pitting at subgrain boundary in alloy 690 autogenous weldment only. And 304L SS autogenous weldment reveals that δ-ferrite between austenite subgrain is easy to be etched. Finally, the resistant ability of dissimilar weldment changes greatly while their fusion zone composition is different. If there is more 304L SS dilution in fusion zone, the subgrain boundary of the fusion zone will be easy to be etched and viewed clearly. If there is more alloy 690 dilution in fusion zone, there will be a few pitting in it, then the resistance ability will be nice.
中文摘要Ⅰ
英文摘要Ⅲ
致謝Ⅴ
總目錄Ⅵ
表目錄Ⅸ
圖目錄Ⅹ
第一章前言1
第二章文獻回顧3
第三章理論說明7
3-1電子束銲接(EBW)製程7
3-2銲接凝固理論11
3-2-1 枝狀晶(dendrite)的凝固成長過程11
3-2-2 凝固模式14
3-2-3 影響次晶結構組織大小的因子15
3-3快速凝固對微觀偏析之影響17
3-4異種金屬銲接18
3-4-1 母材的選擇18
第四章實驗規劃與流程26
4-1實驗規劃26
4-2實驗流程26
4-2-1 實驗材料及其製備26
4-2-2 Bead on Plate(BOP)電子束銲接實驗29
4-2-3 單道次無填料電子束對接銲實驗30
4-2-4 金相試件製備與顯微分析31
4-2-5 機械性質與腐蝕試驗32
4-3實驗設備34
第五章結果與討論37
5-1 BOP銲接參數探討37
5-1-1 Alloy 69037
5-1-2 304L不□鋼38
5-1-3 BOP實驗法與EBW貫穿深度經驗公式之比較39
5-1-4 深寬比40
5-1-5 微硬度試驗41
5-2 對接銲參數之選擇與評估41
5-2-1 BOP實驗選擇參數於對接銲接使用之差異41
5-2-2 對接銲後參數之表面評估42
5-3 690合金自體對接銲43
5-3-1 金相分析43
5-3-2 硬度分析44
5-3-3 拉伸試驗與斷口分析44
5-3-4 腐蝕試驗分析45
5-4 304L不□鋼自體對接銲46
5-4-1 金相分析46
5-4-2 硬度分析47
5-4-3 拉伸試驗與斷口分析48
5-4-4 腐蝕試驗分析48
5-5 690合金與304L不□鋼異種對接銲49
5-5-1 金相分析49
5-5-1 硬度分析50
5-5-1 拉伸試驗與斷口分析50
5-5-1 腐蝕試驗分析51
第六章結論90
第七章未來方向與建議92
第八章參考文獻93
1.T. Ishihiara, “Corrosion Failure and Its Prevention in Light Water Reactor”, Welding International, No.3, pp.209-216, 1989.2.R.A. Speranzini, P.A. Burchart, and K.A. Kanbai,”Corrosion Response of Nuclear Reactor Materials to Mixtures of Decontamination Reagents”, MP/Mebruary, pp.67-72, 1989.3.H. C. Burhard and A. J. Bursle: Final Report, Project 02-5839-001, Southwest Research Institute, San Antonio, TX, 1978.4.U.S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice 93-101, December 17, 1993.5.V. N. Shah and P. E. Mac Donald. ed., Aging and Life Extension of Major Light Water Reactor Components, Elsevier Science Publishers B.V., Amstrerdam, Netherland, 1993.6.葉宗洸,余明昇,“國內外沸水式反應器壓力槽內部組件的劣化問題”, 核研季刊, 第二十二期, pp.49-69, 1997.7.G. J. Theus, R. H. Emanuelson and S. F. Chou, “Stress Corrosion Cracking of Alloy 600 and 690 in All Volatile Treated Water at Elevated Temperature “, EPRI Report NP-3061, 1983.8.B. P. Miglin and G. J. Theus, “Stress Corrosion Cracking of Alloy 600 and 690 in All-Volatile-Treated Water at Elevated Temperature “, EPRI Report NP-5761M, 1988.9.R. A. Page and A. McMinn, “Stress Corrosion Cracking Resistance of Alloys 600 and 690 and Compatible Weld Metals in BWRs”, EPRI Report NP-5882M, 1988.10.R. A. Page, “Stress Corrosion Cracking of Alloys 600 and 690 and Nos.82 and 182 Weld Metals in High Temperature Water”, Corrosion, Vol.39, No.10, pp.409-421, 1983.11.C. L. Briant, and E. L. Hall, ”The Microstructural Causes of Intergranular Corrosion of Alloys 82 and 182”, Corrosion, Vol.43, pp.539-547, 1987.12.王總守, “電子束銲接加工原理及其應用”, 機械月刊, 第二十五卷, 第五期, pp. 254-269, 1994.13.H. J. Stone, S. M. Roberts, and R. C. Reed, “A Process Model for the Distortion Induced by the Electron-Beam Welding of a Nickel-Based Superalloy”, Metallurgical an Materials Transactions A, Volume 31A, September 2000, pp. 2261-2273.14.Y. S. Lim, J. S. Kim, and H. S. Kwon, “Effects of Sensitization Treatment on the Evolution of Cr Carbides in Rapidly Solidified Ni-base Alloy 600 by a CO2 Laser Beam”, Materials Science and Engineering, A279, pp. 192-200, 2000.15.Y. S. Kim, J. H. Suh, I. . Kuk and J.S. Kim, “Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting”, Metallurgical and Materials Transactions A, Vol.28A, No.5, pp1223-1231, 1997.16.Michael Fox, Proc. Seminar on Countermeasures for Pipe Cracking in BWRs, EPRI, Palo Alto, California, Vol.1, Paper 1, 1980.17.B. P. Miglin, and L. W. Sarver, “ Mechanism of Intergranular Corrosion of Inconel 600 Tubing in PWR Steam Generators’, EPRI Report NP-3957M, 1985.18.J. J. Kai, G. P. Yu, C. H. Tsai, M. N. Liu, and S. C. Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690”, Metall. Trans. A, Vol.20A, pp.2057-2067, 1989.19.R. Y. Xue, “Corrosion Test of Plugging Procedure for Steam Generator of Qinshan Nuclear Power Plant“, Nuclear Power Engineering, Vol.14, pp.340-343, 1993.20.K. Stiller, J. Nilsson, and K. Norring, “Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690”, Metall. Trans. A, Vol. 27A, pp.327-341, 1996.21.A. McMinn, and R. A. Page, “Stress Corrosion Cracking of Inconel Alloys and Weldments in High-Temperature Water - The Effect of Sulfuric Acid Addition”, Corrosion, Vol.44, No.4, pp.239-249, 1988.22.R. E. Gold, D. L. Harrod, R. G. Aspden, and A. J. Baum, “Alloy 690 for Steam Generator Tubing Applications”, EPRI Report NP-6997-M, 1990.23.W. L. Mankins, and S. Lamb, “Nickel and Nickel Alloys”, 10th edn., ASM International, USA, pp.428-445, 1992.24.R. A. Page, and A. McMinn, “Relative Stress Corrosion susceptibilities of Alloys 690 and 600 in Simulated Boiling Water Environment”, Metall. Trans. A., pp.877-887, 1986.25.B. P. Miglin and C. E. Choemaker: Corrosion 86, Paper No.255, 1986.26.”Inconel 690”, Huntington Alloys, Inc., Huntington, WV, 1985.27.S. M. Payne, and P. McIntyre, “Influence of Grain Boundary Microstructure on the Susceptibility of Alloy 600 to Intergranular Attack and Stress Corrosion Cracking”, Corrosion, Vol.44, No.5, pp.314-319, 1988.28.J. M. Sarver, J. R. Crum, and W. L. Mankins, “Carbide Precipitation and SCC Behavior of Inconel Alloy 690”, Corrosion, Vol.44, No.5, pp.288-289, 1988.29.D. Choi, and G.S. Was, “Pit Growth in Alloy 600/690 Steam Generator Tubes in Simulated Concentrated Environments (Cu2+, Cl- , and SO42-)”, Corrosion, Vol.46, No.2, pp.100-111, 1990.30.J. J. Kai, C. H. Tsai, and G. P. Yu, “Nuclear Engineering and Design”, North-Holland, 1993.31.G. P. Yu, and H. C. Yao, “The Relation Between the Resistance of IGA and IGSCC and the Chromium Depletion of Alloy 690”, Corrosion, Vol.46, No.5, pp.391-401, 1990.32.J. M. Sarver, J. R. Crum, and W. L. Mankins, “Carbide Precipitation and SCC Behavior of Inconel Alloy 690”, Corrosion, Vol.44, No.5, pp.288-289, 1988.33.W. T. Tsai, ”Stress Corrosion and Corrosion Fatigue Crack Growth Behaviors of Alloy 690 in Thiosulfate-containing Aqueous Environments”, The Report of NSC, R.O.C., 1996.34.J. T. Lee, ”The Study of Pitting Corrosion on Alloy 690”, The Report of NSC, R.O.C., 1996.35.W. Wu, and C. S. Yu, “The Weldment Properties under Mechanical Vibration”, The Nation Conference on Welding Technology, Welding Association of the R.O.C., Kaosiung, pp.74-78, March, 1996.36.蘇子可等,“Inconel 690合金銲接特性之研究”, 行政院原委會81年度研究報告, 1992.37.吳威德,游景森等,“同步次頻震盪於鎳基690合金之應力消除研究”, 核子科學, Vol.33, No.3, pp.190-199, 1996.38.吳威德, 孫儒宗, 許偉勳, 郭俊生, 蔡建興, 吳啟男,”Inconel 690與SUS 304L銲接特性及應力分析研究”,原子能委員會研究報告, 1993年2月.39.W. Wu, C. H. Tsai, F. H. Kuo, W. H. Hsu and J. T. Sum, ”The Investigation on Crack Susceptibility of Alloy 690 Weldments”, Nuclear Science Journal, Vol.34, No.4, pp.247-254, 1997.40.鄭勝隆, ”銲材合金元素之添加對鎳基690與304L不□鋼之銲接特性研究”, 國立成功大學機械工程研究所碩士論文, 1997.41.C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II”, Wiley, New York, 1987.42.E. F. Bradley, “Superalloys:A Technical Guide”, ASM International, Metals Park, 1988.43.Sindo Kuo, Wiley, “Welding Metallurgy”, New York,1987.44.古錦松, “淺談電子束銲接”, 銲接與切割, 第8卷, 第5期, pp.40-45, 1998.45.杜青駿, ”鎳基合金之銲接特性及銲道顯微組織分析之研究”, 國立成功大學機械工程研究所碩士論文, 1997.46.葉東昌, ”鎳基690銲件之特性與組織改善研究”, 國立成功大學機械工程研究所碩士論文, 1999.47.郭聰源, ”鎳基690銲接特性研究”, 國立成功大學機械工程研究所博士論文, 1999.48.顏志軒, ”銲料中添加不同Ti合金元素對鎳基690銲件之影響”, 國立成功大學機械工程研究所碩士論文, 2001.49.G. LaFlamme, J. Knoefel, “Application of Electron Beam Welding”, International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.50.黑田秀郎撰, 鄭文峰譯, 協志工業叢書, “電子射束焊接”, 臺北市, 1976.51.洪祖昌, “從電子束焊接談技術引進與研究發展”, 機械工業, pp. 66-71, 1985年 10月.52.H. Tong and W. H. Giedt, “A Dynamic Interpretation of Electron Beam Welding”, Welding Research Supplement, June 1970, pp. 259s-266s.53.S. Koga, M. Inuzuka, H. Nagatani, T. Iwase, H. Masuda, and M. Ushio, “Sfudy of all Postion Electron beam Welding Process for Pipeline Joints”, Science and Technology of Welding and Joining, Vol. 5, No. 2, pp. 1362-1718, 2000.54.Robert, E. Reed-Hill, and Reza Abbaschian, Physical Metallury Principle, 3 rd edn., Internation Thomson Publishing, 1992.55.J. W. Rutter, and B. Chalmers, Can. J. of Phys., Vol.31, pp.15, 1953.56.R. F. Sekerka, J. Appl. Physiol., Vol.36, pp.264, 1965.57.Sindo Kou, Transport Phenomena and Materials Processing, John Wiley and Sons, New York, 1996.58.J. R. Crum, K. A. Hech, and T. M. Angeliu, “Effect of Different Thermal Treatments on the Corrosion Resistant of Alloy 690 Tubing”, EPRI Report NP-6703-M, 1990.59.王振欽, ”銲接學”, 登文書局, 1987年9月.60.ASM,“Metals Handbook”, 10th Edition, Vol.2, International, 1990.61.王繼敏, ”不□鋼與金屬腐蝕”, 科技圖書股份有限公司, 1990年11月.62.蔡政宏,”690合金銲件之熱龜裂敏感性研究“, 私立義守大學材料系碩士論文, 1997年7月.63.“電銲作業手冊”, 中船公司, 1994年6月.64.“機電工程金屬材料手冊下冊”, 上海科學技術出版社, 1990.65.Franticek Kolenic, Miroslav Kosecek, Batislava/Czechoslovakia, “The Influence of Electron Beam Focusing on the Shape and Depth of the Weld”, Welding and Cutting, 11/1992, pp.24-26.66.B.S. Yilbas, M. Sami, J. Nickel, A. Coban, S.A.M. Said, “Introduction Into the Electron Beam Welding of Austenitic 321-type Stainless Steel”, Journal of Materials Processing Technology 32 (1998) 13-20.67.D. Fritz, “Focusssing of High Energy Density Beams”, Welding in the World/Le Soudage dans le Monde. Vol. 39. No. 4, pp. 172-178, 1997.68.Dann E. Passoja, “Penetration of Solids by High-Power-Density Electron Beams”, British Welding Journal, January 1967, pp. 13-16.69.私立南台科技大學私人研究資料,未發表。70.J. A. Brooks and A. W. Thompson, “Microstructural Develop and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-44, 1991.71.S. Katayama and A. Matsunawa: Proc. Int. Cong. on Applications of Lasers and Electro-optics, San Francisco, 1985.72.J. C. Lippold: Weld. J., 1985, 64, 125s-136s.73.Y. Arata, F. Matsuda, and S. Saruwatari: Trans. JWRI, 1974, 3, 79-88.74.Y. Arata, F. Matsuda, and S. Katayama: Trans. JWRI, 1977, 6, 105-116.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top