跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何承益
研究生(外文):Cheng-I Ho
論文名稱:BGA封裝之熱傳分析與最佳化
論文名稱(外文):The Thermal Analysis and Optimization for Ball Grid Array Package
指導教授:洪振益洪振益引用關係洪祖全
指導教授(外文):Chen-I HungTzu-Chen Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:類神經網路熱貫孔球柵陣列封裝子模式計算流體力學最佳化方法
外文關鍵詞:optimization methodthermal viasartificial neural networkcomputational fluid dynamicsBGA packagesub-model
相關次數:
  • 被引用被引用:9
  • 點閱點閱:908
  • 評分評分:
  • 下載下載:246
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技的快速發展,電子產品朝向小型化且多功能的目標邁進,因此設計出擁有高散熱能力產品的挑戰伴隨而來。本研究以計算流體力學的方法,對電子構裝產品的明日之星---球柵陣列(BGA)封裝方式,來進行詳細的熱傳分析。由於BGA封裝複雜的幾何結構,本文採用子模式的簡化方式,在保持物理現象的情況下模擬局部熱貫孔與錫球的溫度分佈。經由數值計算求得BGA封裝的等效熱阻值,再藉由類神經網路強大的學習能力,建立出輸入參數與輸出熱阻值的關係。並將經過良好訓練的類神經網路配合複合型法的最佳化方法,求得低熱阻目標的最佳散熱設計。本研究將可提供電子封裝廠一個可靠且迅速的BGA封裝散熱設計方法。
With the rapid development of technology, the trend of electronic products getting smaller and multi-functional. Therefore, it is better to design an electronic product with high heat dissipation. In this study, the computational fluid dynamics approach is employed to analyze the heat transfer for ball grid array (BGA) package that is popular in modern electronic industry. Due to the complicate geometric configuration of BGA, the sub-model approach is used to simulate the temperature distributions of thermal vias and solder balls with maintaining the physics in this study. The effective thermal resistance of BGA package is then obtained from numerical simulations. An artificial neural network is trained to build up the relation between input geometry and output thermal resistance. The well-trained network is then used to couple with a complex optimization method to search the optimal BGA design with lower thermal resistance. The study will provide electronic package industry a reliable and rapid method of the heat dissipation design of BGA package.
封面內頁…………………………………………………………………Ⅰ
簽名頁……………………………………………………………………Ⅱ
授權書…………………………………………………………………Ⅲ
中文摘要…………………………………………………………………Ⅳ
英文摘要…………………………………………………………………Ⅴ
誌謝……………………………………………………………………Ⅵ
目錄……………………………………………………………………Ⅶ
表目錄…………………………………………………………………Ⅹ
圖目錄…………………………………………………………………ⅩⅠ
符號說明…………………………………………………………… ⅩⅢ

第一章 緒論……………………………………………………………1
1-1 研究動機與目的……………………………………………………1
1-2 文獻回顧……………………………………………………………5
1-3 本文架構……………………………………………………………7
第二章 BGA 封裝之熱設計……………………………………………9
2-1 電子構裝方式之介紹………………………………………………9
2-2 BGA 封裝之散熱設計……………………………………………10
2-3 等效熱傳導係數的計算…………………………………………11
2-3-1 熱貫孔…………………………………………………………11
2-3-2 錫球……………………………………………………………12
2-4 熱阻的定義………………………………………………………13
第三章 數值模擬………………………………………………………15
3-1 數值方法…………………………………………………………15
3-2 模型建立…………………………………………………………16
3-3 統御方程式………………………………………………………17
3-4 邊界條件…………………………………………………………18
3-5 研究工具…………………………………………………………19
第四章 類神經網路與最佳化方法……………………………………20
4-1 倒傳遞類神經網路………………………………………………20
4-1-1 類神經網路簡介………………………………………………20
4-1-2 網路基本架構…………………………………………………22
4-1-3 網路演算法……………………………………………………23
4-1-4 網路學習結果評估……………………………………………28
4-1-5 網路參數設定…………………………………………………29
4-1-6 範例的來源與組成……………………………………………31
4-2 最佳化方法………………………………………………………32
4-2-1 單純型法………………………………………………………32
4-2-2 複合型法………………………………………………………36
第五章 結果與討論……………………………………………………37
5-1 溫度場與流場分析………………………………………………37
5-1-1 熱貫孔…………………………………………………………38
5-1-2 錫球……………………………………………………………38
5-2 類神經網路訓練…………………………………………………39
5-3 探討最佳化熱阻…………………………………………………40
5-4 結論………………………………………………………………41
參考文獻…………………………………………………………………42
自述及著作權聲明………………………………………………………73
[1] L. T. Yeh, “Review of Heat Transfer Technologies in Electronic Equipment,” J. of Electronic Packaging, vol. 117, pp. 333-339, 1995.
[2] C. Chapman, “The Basics of Package/Device Cooling,” Electronic Packaging & Production, pp. 57-60, May 1998.
[3] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[4] R. I. Issa, “Solution of the Implicit Discretized Fluid Flow Equations by Operator-Splitting,” J. of Computational Physics, vol. 62, pp. 40-65, 1985.
[5] R. I. Issa, B. Ahmadi-Befrui, K. R. Beshay, and A. D. Gosman, “Solution of the Implicit Discretized Reacting Flow Equations by Operator-Splitting,” J. of Computational Physics, vol. 93, pp. 388-410, 1991.
[6] A. D. Kraus and A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment, McGraw-Hill, New York, 1983.
[7] M. H. N. Naraghi and V. W. Antonetti, “Macro-Constriction Resistance of Distributed Contact Contour Areas in a Vacuum Environment,” Enhance Cooling Techniques for Electronic Applications, Proceedings of the ASME Winter Annual Meeting, vol. 263, pp. 107-114, 1993.
[8] S. Lee, T. F. Lemczyk, and M. M. Yovanovich,, “Analysis of Thermal Vias in High Density Interconnect Technology,” Proceedings of the Eighth IEEE SEMI-THERM Symposium, pp. 55-61, 1992.
[9] S. Hashemi and D. Walshak, “Enabling Technologies for Fewing-Chip Packaging: A Study in Thermal Performance,” Proc. ASME Winter Annual Meeting, EEP- vol. 6, pp. 35-41, 1993.
[10] F. Christiaens, E. Beyne, and J. Berghmans, “Modeling of Thermal Vias in Thin Film Multichip Modules,” Proc. I-THERM IV, Intersociety Conf. on Thermal Phenomena in Electronic Systems, pp. 101-107, 1994.
[11] R. S. Li, “Optimization of Thermal Via Design Parameters Based on an Analytical Thermal Resistance Model,” The Sixth Intersociety Conf. on Thermal and Thermo-mechanical Phenomena in Electronic Systems (ITHERM), pp. 475-480, 1998.
[12] C. Argento and G. Kromann, “The Development of Three-Dimensional Computational-Fluid-Dynamics Models of PBGA Interconnect Technology for Moderate Air-Cooled Systems,” Proc. International Flip Chip, Ball Grid Array, TAB, and Advanced Packaging Symposium, pp. 218-224, 1995.
[13] A. Mertol, “Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid (EPBGA) Packages,” IEEE Trans. on Components, Packaging, and Manufacturing Tech., part B, vol. 19, no. 2, pp. 427-443, 1996.
[14] Z. Johnson, K. Ramakrishna, B. Joiner, and M. Eyman, “Thermal Sub-Modeling of the Wire-Bonded Plastic Ball Grid Array Package,” In. Proc. of the 13th IEEE SEMI-THERM Symposium, pp. 1-9, Jan. 1997.
[15] Z. Johnson and M. Eyman, “Designed Based Thermal Simulation Methodology for Ball Grid Array Packages,” Proceedings of the 6th Intersociety Conference on Thermal Phenomena in Electronic Systems (ITHERM), pp. 82-87, 1998.
[16] T. T. Lee, “An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool,” Proceedings of the ASME, HTD-vol. 364-1, pp. 21-28, 1999.
[17] T. M. Ying and K. C. Toh, “A Constriction Resistance Model in Thermal Analysis of Solder Ball Joints in Ball Grid Array Packages,” Proceedings of the ASME, HTD-vol. 364-1, pp. 29-36, 1999.
[18] S. Lee, S. Song, V. Au, and K. P. Moran, “Constriction/Spreading Resistance Model for Electronic Packaging,” ASME/JSME Thermal Engineering Conference, vol. 4, pp 199-206, 1995.
[19] C. Madhusudana, “Thermal Contact Conductance,” Springer-Verlag, 1996.
[20] G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications, Thermal Management Series: Part 1,” Electronic Packaging & Production, pp. 53-58, March 1998.
[21] J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, Paul St., 1992.
[22] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley and Sons, New York, 1994.
[23] T. Zhou and M. J. Hundt, “Heat Dissipation and Thermal Performance for PQFP, BGA and Flip Chip,” Advances in Electronic Package, ASME, vol. 2, pp. 2163-2168, 1997.
[24] T. C. Hung, S. K. Wang, and F. P. Tsai, “Simulations of Passively Enhanced Heat Transfer Across an Array of Volumetric Heat Sources,” Journal of Communications in Numerical Methods in Engineering, vol. 13, pp. 855-866, 1997.
[25] T. C. Hung and C. S. Fu, “Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling through Geometric Modification in a Mixed Convection Domain,” J. Numerical Heat Transfer, Part A, vol. 35, no. 5, pp. 519-535, 1999.
[26] 劉君愷,IC構裝之散熱對策,工業材料雜誌,第171期,第123-129頁,民國90年3月。
[27] G. N. Ellison, Thermal Computations for Electronic Equipment, R. E.Krieger Publishing Company, Malabar, FL., 1989.
[28] J. H. Lau, Ball Grid Array Technology, McGraw-Hill, New York, 1995.
[29] 葉怡成,應用類神經網路,儒林圖書有限公司,臺北市,民國86年。
[30] 葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,臺北市,民國87年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top