跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉耿豪
研究生(外文):Keng-Hao Liu
論文名稱:磁場影響下微極流體通過波形渠道之暫態對流熱傳研究
論文名稱(外文):Transient Convection in Micropolar Fluid Flow Through a Wavy Wall Channel Including the Magnetic Field Effect
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Chao-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:95
中文關鍵詞:樣線函數座標轉換微極流體波形渠道
外文關鍵詞:coordinate transformationcubic splinemicropolar fluidswavy surface channel
相關次數:
  • 被引用被引用:10
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本文利用座標轉換和三次樣線法分析微極流體在磁場影響下流經波形渠道的各種熱傳現象。統制方程式之推導由完整的Navier-Stokes方程式著手,配合Eringen所推導之微極流體理論,將牛頓流體擴展至非牛頓流體的應用。數值計算的方法是採用三次樣線交換方向定置法(SADI:Spline Alternating-Direction Implicit Method),配合座標轉換理論,將複雜的曲面轉成平面,來探討微極流體穿過波形渠道之混合對流分析。研究結果顯示,因微極流體具有渦漩黏度、旋轉梯度黏度及微慣量密度等特性,因此造成流動阻力增加及熱傳率下降。當熱傳表面凸起或凹陷時,此種邊界上的位移將強迫導致流場發生變化,並進一步地影響到熱傳效率。本文實例發現,波形表面所增加的熱傳面積足以抵消因流動不便(由表面幾何形狀所造成)所產生之熱阻抗。因此無論何種流體,其在波形表面的熱傳率皆高於相對應的平板。此外,值得注意的是,通常熱傳效率的增加亦隱含著板面摩擦係數的增加,此板面剪應力的增加將造成波形渠道所需之驅動力(Pumping Power)增加。而加入磁場後也可以增加壁面附近的流場速度,所以熱傳率也提高。當Ri值越大表示浮力效應越明顯,波谷區的迴流減小而且壁面流速變快,因此Nusselt數越高,也就是熱傳效率提高。
Forced and mixed convection of micropolar fluids through a periodic array of wavy-wall channel has been analyzed by a simple coordinate transformation method and the spline alternating-direction implicit method. The governing equations of system are derived from complete Navier-Stokes equations with theories of micropolar fluid, we can expand the applications from in Newtonian fluids to in non-Newtonian fluids. The transformed governing equations can expand the irregular boundary into a calculable regular plane, and then solve it by using the spline alternating-direction implicit method (SADI).
Numerical results show that, in micropolar fluids, both the velocity of fluid and heat transfer rate would decrease since effects of vortex viscosity, spin-gradient viscosity and micro-inertia density. When the heat transfer surface is lumpy, this displacement of boundary will disturb the flow and alter the heat transfer rate. The synthetic result show that the add quantity of heat transfer area in wavy surfaces is enough to offset the thermal resistance which is due to the geometry surfaces. Therefore, the heat transfer rate of wavy surface is higher than that of the corresponding flat plate in all fluids. Furthermore, it should be noted that the increase in heat transfer rate usually implies the increase in skin-friction coefficient. This would make a penalty in pumping power required for wavy channels. Incluiding the magnetic field effect also can increase the velocity near the wavy surface,so the heat transfer rate is better。
中文摘要 Ⅰ
ABSTRACT Ⅲ
誌謝 IV
目 錄 V
表目錄 Ⅷ
圖目錄 IX
符號說明 ⅩV
第一章、緒論 1
1-1研究背景 1
1-2文獻回顧 2
1-3本文架構 5
第二章、數值方法 7
2-1三次樣線定置法 7
2-2三次樣線函數表示法及其性質 9
2-3利用三次樣線函數求解 13
2-4邊界條件之處理 17
第三章、理論分析 19
3-1基本磁性流體力學導論 19
3-2理論模型的建構 22
3-3數值解析 30
3-4解題程序 32
第四章、結果與討論 34
4-1強迫對流 Forced Convection 34
4-1-1 波振幅對強迫對流的影響 35
4-1-2 微極參數R對強迫對流的影響 38
4-1-3 磁場強度對強迫對流的影響 39
4-1-4 雷諾數Re對強迫對流的影響 40
4-2混合對流 Mixed Convection 42
4-2-1 浮力參數Ri對混合對流的影響 42
4-2-2 波振幅對混合對流的影響 44
4-2-3 微極參數R對混合對流的影響 45
4-2-4 磁場強度對混合對流的影響 45
4-2-5 雷諾數Re對混合對流的影響 46
第五章、結論 88
參考文獻Agarwal, S. and Dhanapal, C., “Flow and heat transfer in a micropolar fluid past a flat plate with suction and heat sources,” International Journal of Engineering Science, Vol. 2, pp. 1257-1266, 1988.Ahlbrg, J. H., Nilson, E. N., and Walsh, J. L., “The theory of splines and their application,” Academic Press, 1967.Albasiny, E. L. and Hoskins, W. D., “Increase Accuracy cubic spline solutions to two-point boundary value problems,” J. Inst. Math. Applic., Vol. 9, pp. 47-55, 1972.Arimana, T. and Turk, M. A. and Sylvester, N. D., ”Applications of microcontinuum fluid mechanics,” International Journal of Engineering Science, Vol. 12, No. 4, 1974, pp. 273-293.Arimanb, T, Turk, M. A. and Sylvester, N. D., “On steady and pulsatile flow of blood,” J. Appl. Mech., Vol. 41, pp. 1-7, 1974.Arimanc, T and Turk, M. A. and Sylvester, N. D., ”Microcontinuum fluid mechanics- a review,” International Journal of Engineering Science, Vol. 11, pp. 905-930, 1973. Burns, J. C. and Parks, T., “Peristaltie motion,” Journal of Fluid mechanical, Vol. 29, No. 3, pp. 405-416, 1967.Chawla, T. C., Leaf, G. Chen, W. L., and Grolmes, M. A., The application of the collocation method using hermite cubic spline to nonlinear transient one-dimensional heat conduction problem,” ASME Journal of Heat Transfer, pp. 562-569, 1975.Chen, C. K., “Application of cubic spline collocation method to solve transient heat transfer problem,” Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182, 1986.Chiu, P. and Chou, H. M., “Free Convection in the Boundary Layer Flow of a Micropolar Fluid along a Vertical Wavy Surface”, Acta Mechanical. Vol. 101, pp. 161-174, 1993.Chiu, C. P. and Chou, H. M., “Transient analysis of natural convection along a vertical wavy surface in micropolar fluids,” International Journal of Engineering Science, Vol. 32, pp. 19-33, 1994.Ericksen, J. L., “Theory of anisotropic fluids,” Transactions Society of Rheology, Vol. 4, pp. 29-39, 1960.Eringen, A. C., “Assessment of director and micropolar theories of liquid crystals,” International Journal of Engineering Science, Vol. 31, No. 4, pp. 605-616, 1993.Eringen, A. C., “Simple microfluids,” Int. J. Engng. Sci., Vol. 2, pp. 205-217, 1964.Eringen, A. C., ”Theory of micropolar fluids,” Journal of Mathematical Mechanics, Vol. 16, No. 1, pp. 1-16, 1966.Eringen, A. C., “Theory of thermomicro fluids,” Journal of Mathematical Analysis and Application, Vol. 38, No. 9, pp. 480-490, 1972.Fyfe, D. J., “The use of cubic splines in the solution of two-point boundary value problems,” Computer Journal, Vol. 12, pp. 188-192, 1969.Goldstein, L. J. and Sparrow, E. M., “Heat/mass transfer characteristics for flow in a corrugated wall channel,” ASME Journal of Heat Transfer, Vol. 99, No. 2, pp. 187-195, 1977.Hudimoto, B. and Tokuoka, T., “Two-dimensional shear flows of linear micropolar fluids,” International J. of Engineering Science, Vol. 7, pp. 515-522. 1969.Jeffery, G. B., “The motion of ellipsoidal particies immersed in a viscous fluid,” Proceedings of the Royal Society of London, Series A, Vol. 102, pp. 161-179, 1922.Khonsari, M. M., “On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids,” Acta Mechanica, Vol. 81, No. 3-4, pp. 235-244, 1990.Khonsari, M. M. and Brewe, D. E., “On the performance of finite journal bearings lubricated with micropolar fluids,” STLE Tribology Transactions, Vol. 32, No. 2, pp. 155-160, 1989.Kolpashchikov, V. L., Migun, N. P. and Prokhorenko, P. P., “Experimental determination of material micropolar fluid constants,” International Journal of Engineering Science, Vol. 21, No. 4, pp. 405-411, 1983.Lee, J. D. and Eringen, A. C., “Boundary effects of orientation of nematic liquid crystals,” J. Chem. Phys., Vol. 55, pp. 4509-4512, 1971.Lockwood, F. E., Benchaita, M. T. and Friberg, S. E., “Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact, ” ASLE Tribology Transactions, Vol. 30, No. 4, pp. 539-548, 1987.Napolitano, M., “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115, 1984.O’Brien, J.E. and Sparrow, E. M., “Corrugated-duct heat transfer, pressure drop, and flow visualization, ”ASME Journal of Heat Transfer, Vol. 104,No.3,pp.410-416, 1982Prager, S., “Stress strain relations in a suspension of dumbbells,” Transactions Society of Rheology, Vol. 1, pp. 53-62, 1957.Raggett, G. F., Stone, J. A. R., and Wisher, S. J., “The cubic spline solution of practical problems modeled by hyperbolic partial differential equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 139-151, 1976.Rohsenow, W. M., “Heat transfer and temperature distribution in laminar film condensation on a horizontal tube,” International Journal of Heat and Mass Transfer, Vol. 27, pp. 39-47, 1956.Rubin, S. G. and Graves, R. A., “Viscous flow solution with a cubic spline approximation,” Computers and Fluids, Vol. 1, No. 5, pp. 1-36, 1975. Rubin, S. G. and Khosla, P. K., “Higher-order numerical solution using cubic splines,” AIAA Journal, Vol. 14, pp. 851-858, 1976.Rubin, S. G. and Khosla, P. K., “Polynomial interpolation methods for viscous flow calculation,” Journal of Computational Physics, Vol. 24, pp. 217-244, 1977.Saniei, N. and Dini, S., ”Heat transfer characteristics in a wavy-walled Channel,” ASME Journal of Heat Transfer, Vol. 115, No. 3, pp. 788-792, 1993.Wang, G. and Vanka, P., ”Convective heat transfer in periodic wavy passages,” International Journal of Heat and Mass Transfer. Vol. 38, No. 17, pp. 3219-3230, 1995.Wangb, P. and Kahawita, R., “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286, 1983.Wang, P., Lin, S., and Kahawita, R., “The cubic spline integration technique for solving fusion welding problems,” Journal of Heat Transfer, Vol. 107, pp. 485-489, 1985.Yang, Y. T., Chen, C. K., Lin, M. T., “Natural convection of non-Newtonian fluids along a wavy vertical plate including the magnetic field effect,” International Journal of Heat and Mass Transfer, Vol. 39, No. 13, pp. 2831-2842, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top