跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李健銘
研究生(外文):Chien-Ming Li
論文名稱:摻雜鋯元素於非含氫類鑽碳膜之磨潤特性研究
論文名稱(外文):The research on tribological properties of hydrogen-free diamond-like carbon films with zirconium dopant
指導教授:蘇演良
指導教授(外文):Yean-Liang Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:鋯金屬微孔鑽削非含氫類鑽碳膜車削
外文關鍵詞:micron-drillinghydrogen-free DLCturningzirconium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
類鑽碳膜由於具備碳的sp3鍵結與sp2鍵結,因而包含了許多特性如高硬度、低摩擦、高化學鈍性、高熱傳等。類鑽碳膜多樣化的性質使其能應用於不同領域。因此,本實驗即以非含氫的類鑽碳膜摻雜鋯金屬作為研究主題,探討偏壓與不同鋯含量對a-C:Zr鍍膜在磨潤性質上的影響。
第一階段變化四種偏壓進行濺鍍。四種鍍膜中,以偏壓-75V製作之a-C:Zr鍍膜有最高的硬度。在磨耗試驗中,偏壓-75V之鍍膜與S45C線磨出現0.088的低摩擦係數,其磨痕深度也最淺,顯見其優越的潤滑效果。
第二階段變化11種不同鋯含量的a-C:Zr鍍膜進行磨耗試驗與切削實驗。在磨耗試驗中,不論在碳化鎢或是高速鋼基材上,以10N及100N之荷重進行實驗皆出現低摩擦係數區域,即鋯含量在4.4 – 25.35 at%之間,在此區間的a-C:Zr鍍膜有優良的潤滑效果。但在車削中碳鋼的實驗中,鋯含量在4.4 – 25.35 at%之間的a-C:Zr鍍膜無法發揮潤滑與保護車刀之功效,反而是鋯含量45.76 at%以上之鍍膜,有較佳的保護效果。
在PCB鑽削實驗中,摩擦係數最低的鍍膜只能些微降低刀具磨耗,而鋯含量48.14 at%的鍍膜卻能大幅降低刀具磨耗同時提升刀具壽命達四倍以上。
DLC (diamond-like carbon) contains sp3 and sp2 bonding; therefore, it has many desirable characteristics such as high hardness, low friction coefficient, good chemical inertness, high thermal conductivity, etc. In this experiment, zirconium was doped into non-hydrogenated DLC films to make a-C:Zr films. Then the influence of substrate biases and zirconium contents on tribological properties of DLC films was discussed.
At first stage, four kinds of substrate biases were sputtered. Among the four films, a-C:Zr film produced by –75V substrate bias had the highest hardness value. In the SRV wear tests with S45C, a-C:Zr film produced by –75V substrate bias also showed a 0.088 low friction coefficient value and the shallowest wear mark, an indication of its excellent lubrication.
At final stage, a-C:Zr films with different zirconium contents were sputtered. In the SRV wear tests, S45C counterparts and two loads, 10N and 100N, were used. The experiment results show that a-C:Zr films with zirconium contents between 4.4-25.35 at% have low friction coefficients when load was 10N or 100N. In the turning tests, S45C was still used. a-C:Zr films which had zirconium contents above 45.76 at% show better wear resistance than the others. In the PCB drilling tests, a-C:Zr film with 48.14 at% zirconium contents not only reduced the wear of micro-drill but prolonged the tool life. The a-C:Zr film with 48.14 at% zirconium contents extended tool life by 4 folds.
總 目 錄

授權書………………………………………………………………….Ⅰ
考試合格證明書……….…………………………………………………Ⅱ
中文摘要……………………………………………………………Ⅲ
Abstract…..…………………………………………………………….…Ⅳ
誌謝……………………………………………………………………….Ⅴ
總目錄………………………………………………………………….…Ⅵ
表目錄 ……………………………………………………………….…Ⅸ
圖目錄……………………………………………..…………………....…Ⅹ
第一章 緒論 …………………………………………………………1
第二章 理論基礎與文獻回顧…………………………………………3
2–1 類鑽碳膜..……………………………………..………………3
2 – 1 – 1 類鑽碳膜的製作與分類……...………………………3
2 – 1 – 2 類鑽碳膜之基本特性………...………………………3
2 – 1 – 3 類鑽碳膜在應用上需克服之問題……….…..………4
第三章 實驗方法與步驟 ……………………………………………6
3 – 1 實驗目的………..……………………….……………………6
3 – 2 實驗流程……………..…………………….…………………6
3 – 3 實驗方法與規劃…………………..……….…………………6
3 – 3 – 1 濺鍍參數與鍍膜安排…………….……….…………6
3 – 3 – 2 濺鍍系統與靶材配置….……………..…...…………7
3 – 3 – 3 鍍膜成分與元素分佈分析…………………..………7
3 – 3 – 4 鍍膜微結構分析…………...………...………………7
3 – 3 – 5 硬度實驗…………...………...………………………8
3 – 3 – 6 附著性實驗…………...………...……………………8
3 – 3 – 7 耐熱性實驗…………...………...……………………9
3 – 3 – 8 磨耗實驗…………...………...………………………9
3 – 3 – 9 車削實驗…………....………...…………….………10
3 – 3 – 10 PCB鑽削實驗……………....………...……………10
3 – 4 實驗設備……………..…………………….………..………10
第四章 實驗結果與討論……………………………………………13
4 – 1 第一階段鍍膜基本性質……………..………….…..………13
4 – 1 – 1 偏壓對表面粗度之影響…………….……….……13
4 – 1 – 2 偏壓對鍍膜硬度之影響…………….……….……13
4 – 1 – 3 第一階段鍍膜之附著性…………….……….……13
4 – 1 – 4 第一階段鍍膜微結構分析………….……….……14
4 – 2 第一階段鍍膜磨潤性能測試……………..………...………15
4 – 3 第二階段鍍膜基本性質…………………..………...………16
4 – 3 – 1 鍍膜成分與膜厚之關係…………….……….……16
4 – 3 – 2 第二階段鍍膜硬度………………….……….……16
4 – 3 – 3 第二階段鍍膜之附著性…………….……….……17
4 – 3 – 4 第二階段鍍膜微結構分析………….……….……18
4 – 4 第二階段鍍膜之耐熱性…………………..………...………19
4 – 5第二階段鍍膜磨潤性能測試………………….…...………20
4 – 6第二階段鍍膜車削性能測試………………….…...………22
4 – 6 – 1 車削實驗結果………….…………………….……22
4 – 6 – 2 鍍膜刀具之破壞模式………….…………….……22
4 – 7第二階段鍍膜PCB鑽削測試…………….……..…….…23
第五章 結論….…………………………………………………..………25
第六章 參考文獻……………..…………………………………………27
附錄1 第一階段刮痕實驗結果SEM……………..………..….……... 67
附錄2 第一階段壓痕實驗結果SEM圖……………..……………..… 68
附錄3 第一階段鍍膜斷面SEM圖…………………………….……... 69
附錄4 第一階段鍍膜X光繞射分析結果…………………….…..….. 70
附錄5 第一階段與S45C線磨摩擦係數……………………….…..…. 71
附錄6 第一階段與S45C線磨磨痕圖………………………….….…. 72
附錄7 第一階段與磷青銅線磨摩擦係數…………………….…….… 73
附錄8 第一階段與鉻鋼球點磨摩擦係數………………………..…… 74
附錄9 第一階段SRV磨耗試驗結果………………………….…….... 75
附錄10 第二階段鍍膜斷面SEM圖…………………………….….….. 76
附錄11 第二階段鍍膜於高速鋼基材之壓痕………………………..… 78
附錄12 第二階段鍍膜於碳化鎢基材之壓痕………..……………....… 80
附錄13 第二階段鍍膜於高速鋼基材之刮痕……………………..…… 82
附錄14 第二階段鍍膜於碳化鎢基材之刮痕……………………..…… 84
附錄15 第二階段鍍膜X光繞射分析圖………………………….…… 86
附錄16 第二階段a-C:Zr/SKH51 V.S. S45C 10N………………….….. 90
附錄17 第二階段a-C:Zr/WC V.S. S45C 10N……………………….… 92
附錄18 第二階段a-C:Zr/SKH51 V.S. S45C 100N………………..…… 94
附錄19 第二階段a-C:Zr/WC V.S. S45C 100N…………………….….. 96
附錄20 第二階段SRV磨耗試驗結果 10N……………………….….. 98
附錄21 第二階段SRV磨耗試驗結果 100N……………………….… 99
附錄22 第二階段鍍膜磨耗壽命圖………………………………….… 100
自 述 ………………………………………………………………….. 101
著作權聲明 ……………………………………………………………. 102

表 目 錄

表4-1 第一階段不同偏壓製作之a-C:Zr鍍膜的附著性測試結果… 31
表4-2 第一階段不同偏壓製作之a-C:Zr鍍膜的厚度與鋯含量…… 31
表4-3 第二階段鍍膜的鋯含量與膜厚……………………………… 31
表4-4 第二階段鍍膜於高速鋼基材附著性測試結果……………… 31
表4-5 第二階段鍍膜於碳化鎢基材附著性測試結果……..….……. 31

圖 目 錄

圖3-1 實驗流程圖……………………………………………...…..... 32
圖3-2 鍍膜安排……………………………………………….…....... 33
圖3-3 濺鍍系統示意圖……………………………………….…....... 33
圖3-4 GDS縱深成分分析表示圖………………………………...… 34
圖3-5 類鑽碳膜Raman分析之D peak和G peak示意圖…..….…. 34
圖3-6 壓痕等級示意圖………………………………………..…..… 35
圖3-7 SRV往復式磨耗試驗機配置簡圖……………………..…..… 35
圖3-8 車削時切削力示意圖…………………………………..…..… 36
圖3-9 車削時切削力擷取裝置示意圖………………………..…..… 36
圖3-10 車刀磨耗示意圖…………………………………………..….. 37
圖3-11 微鑽針刀具磨耗示意圖…………………………………..….. 37
圖4-1 基板偏壓對鍍膜表面粗度之影響………………………..….. 38
圖4-2 基板偏壓對鍍膜硬度之影響……………………………..….. 38
圖4-3 基材施加偏壓產生的離子轟擊效應與再濺射之現象…….... 39
圖4-4 第一階段偏壓-75V鍍膜之XRD分析圖………………….... 40
圖4-5 第一階段鍍膜於高速鋼基材與S45C線乾磨磨痕深度與磨耗壽命比較圖………………………………………………... 40
圖4-6 第一階段鍍膜於高速鋼基材與磷青銅線乾磨磨痕深度與磨耗壽命比較圖………………………………………………… 41
圖4-7 第一階段鍍膜於高速鋼基材與鉻鋼球點磨磨痕深度與磨耗壽命比較圖…………………………………………………… 41
圖4-8 第一階段磨耗實驗結果之平均摩擦係數比較圖………….... 42
圖4-9 第二階段鍍膜在相同濺鍍時間下鋯成分比與膜厚之關係… 43
圖4-10 第二階段鍍膜鋯成分比與硬度之關係………………….….. 43
圖4-11 第二階段鍍膜於高速鋼基材上微硬度量測結果……….….. 44
圖4-12 第二階段鍍膜於碳化鎢基材上微硬度量測結果……….….. 44
圖4-13 第二階段鍍膜刮痕SEM圖…………………………….……. 45
圖4-14 第二階段Z0鍍膜XRD分析結果……………………….….. 46
圖4-15 第二階段Z0 – Z7鍍膜之Zr (101)繞射波峰強度比較圖….. 46
圖4-16 第二階段Z5鍍膜XRD分析結果……………………….….. 47
圖4-17 第二階段Z10鍍膜XRD分析結果…………………………. 47
圖4-18 第二階段鍍膜拉曼分析結果……………...……....………..... 48
圖4-19 第二階段鍍膜於高速鋼基材經熱處理後硬度比較…...…..... 48
圖4-20 第二階段Z0鍍膜經450℃熱處理後XRD分析結果….…... 49
圖4-21 第二階段Z0鍍膜經熱處理前GDS分析結果……………… 49
圖4-22 第二階段Z0鍍膜經450℃熱處理後GDS分析結果…….... 49
圖4-23 第二階段Z3鍍膜經300℃熱處理後XRD分析結果………. 50
圖4-24 第二階段Z10鍍膜經300℃熱處理後XRD分析結果….…. 50
圖4-25 第二階段Z3鍍膜經450℃熱處理後XRD分析結果…….... 51
圖4-26 第二階段Z10鍍膜經450℃熱處理後XRD分析結果…….. 51
圖4-27 第二階段Z3鍍膜熱處理前GDS分析結果………..….…… 52
圖4-28 第二階段Z3鍍膜經450℃熱處理後GDS分析結果………. 52
圖4-29 第二階段Z10鍍膜熱處理前GDS分析結果…………….…. 53
圖4-30 第二階段Z10鍍膜450℃熱處理後GDS分析結果…….…. 53
圖4-31 第二階段鍍膜於高速鋼基材與S45C線乾磨實驗結果(負荷10N)…………………………………………………………... 54
圖4-32 第二階段鍍膜於碳化鎢基材與S45C線乾磨實驗結果(負荷10N)…………………………………………………………... 54
圖4-33 第二階段鍍膜於高速鋼基材與S45C線乾磨實驗結果(負荷100N)………………………………….………………..…….. 55
圖4-34 第二階段鍍膜於碳化鎢基材與S45C線乾磨實驗結果(負荷100N)……………………………….…………………..…….. 55
圖4-35 第二階段鍍膜磨耗壽命圖之一……………………….……... 56
圖4-36 第二階段鍍膜磨耗壽命圖之二…………..………….………. 56
圖4-37 第二階段鍍膜車削中碳鋼棒材之平均刀腹磨耗成長比較圖………………………………………………….…………... 57
圖4-38 第二階段鍍膜車削中碳鋼棒材之最大刀腹磨耗成長比較圖……………………………………………………………… 57
圖4-39 第二階段被覆車刀車削中碳鋼後刀腹磨耗SEM圖……….. 58
圖4-40 第二階段鍍膜車削中碳鋼之平均切削力………..………….. 59
圖4-41 第二階段鍍膜車削中碳鋼之工件表面粗度………………… 59
圖4-42 第二階段被覆Z2鍍膜車刀車削第一道次後刀腹面……….. 60
圖4-43 第二階段被覆Z9鍍膜車刀車削第一道次後刀腹面……….. 61
圖4-44 第二階段被覆Z6鍍膜車刀車削第一道次後刀頂面……….. 62
圖4-45 第二階段被覆Z9鍍膜車刀車削第一道次後刀頂面……….. 63
圖4-46 第二階段被覆車刀刀頂面SEM圖………………………….. 64
圖4-47 被覆Z3、Z9、Z10鍍膜之微鑽針平均刀腹磨耗趨勢圖…… 65
圖4-48 被覆Z3、Z9、Z10鍍膜之微鑽針刀角磨耗趨勢圖………… 66
圖4-49 被覆Z3、Z9、Z10鍍膜之微鑽針刀具壽命………………… 66
1.卓廷彬, "物理蒸鍍技術在3C產業工模具的應用", 金屬工業35卷3期, 中華民國90年5月.
2.V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, L. Jastrabik, "Hardness,intrinsic stress, and structure of the a-C and a-C:H films prepared by magnetron sputtering", Diamond and Related Materials, Vol. 10 (2001) pp. 1076-1081.
3.劉國新, "經非平衡磁控被覆類鑽碳膜對銑刀磨耗性質之影響", 國立成功大學機械工程研究所碩士論文, 民國八十八年六月.
4.D. Monaghan, D.G. Teer and P.A. Logan, I. Efeoglu and R.D. Arnell, "Deposition of wear resistant coatings based on diamond like carbon by unbalanced magnetron sputtering", Surface and Coatings Technology, Vol. 60 (1993) pp. 525-530.
5.H. Ronkainen, S. Varjus, J. Koskinen, K. Holmberg, "Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings", Wear, Vol. 249 (2001) pp. 260-266.
6.A. Raveh, J.E. Klemberg-Sapieha, L. Martinu, M.R. Wertheimer, "Deposition and properties of diamondlike carbon films produced in microwave and radio-frequency plasma", Journal of Vacuum Science and Technology A, Vol. 10, No. 4 (1992) pp. 1723.
7.C.B. Collins, F. Davanloo, T.J. Lee, J.H. You, H. Park, "Amorphic diamond films produced by laser ablation", Materials Research Society Symposium Proceedings, Vol. 285 (1993) pp. 547-555.
8.A.A. Voevodin, J.S. Zabinski, "Superhard, functoinally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection", Diamond and Related Materials, Vol.7 (1998) pp. 463-467.
9.E.I. Meletis, A. Erdemir, and G.R. Fenske, "Tribological characteristics of DLC films and duplex plasma nitriding/DLC coating treatments", Surface and Coating Technology, Vol. 73 (1995) pp. 39-45.
10.M.J. Dai, K.S. Zhou, Z.G. Yuan, Q. Ding, Z.Q. Fu, "The cutting performance of diamond and DLC-coated cutting tools", Diamond and Related Materials, Vol. 9 (2000) pp. 1753-1757.
11.E. Teng, C. Jiaa, and A. Eltoukhy, "Diamond-like carbon overcoat for magnetic thin film recording disks", Surface and Coating Technology, Vol. 68-69 (1994) pp. 632-637.
12.B. Bhushan and J. Ruan, "Tribological performance of thin film amorphous carbon overcoats for magnetic recording rigid disks in various environments", Surface and Coating Technology, Vol. 68-69 (1994) pp. 644-650.
13.H. Kawahara, T. Sakairi, S. Momose, Y. Ishihara, and H. Urai, "ABS carbon overcoat films for highly reliable recording heads", NEC Research and Development, Vol. 37 (1996) pp. 13-20.
14.E. Wachtel, P. Villars, A. Armini, and M. Spector, "Tribology of alumina and diamond-like coatings for orthopaedic applications", Surface modification technologies V: Proceedings of the Fifth International Conference held in Birmingham, UK, 2-4, September 1991, (1992) pp. 125-138.
15.T.L. Parker, K.L. Parker, I.R. McColl, D.M. Grant, and J.V. Wood, "The biocompatibility of low temperature diamond-like carbon films: a trnsmission electron microscopy, scanning electron microscopy and cytotoxicity study", Diamond and Related Materials, Vol. 3 (1994) pp. 1120-1123.
16.J. Narayan, W.D. Fan, R.J. Narayan, P. Tiwari, and H.H. Stadelmaier, "Diamond, diamond-like and titanium nitride biocompatible coatings for human dody parts", Material Science and Engineering, Vol. B25 (1994) pp. 5-10.
17.K.W.R. Gilkes, H.S. Sands, D.N. Batchelser, W.I. Milne, J. Robertson, "Direct observation of sp3 bonding in tetrahedral amorphous carbon UV Raman spectroscopy", Journal of Non-crystalline Solids, Vol. 227-230 (1998) pp. 612-616.
18.D. Schwarzbach, R. Haubner and B. Lux, "Internal stresses in CVD diamond layers", Diamond and Related Materials, Vol. 3 (1994) pp. 757-764.
19.C. Donnet, "Tribology of solid lubricant coatings", Condensed Matter News, Vol. 4, Issue 6 (1995) pp. 9-24.
20.A. Grill, "Tribology of diamondlike carbon and related materials: An updated review", Surface and Coating Technology, Vol. 94-95 (1997) pp. 507.
21.C. Donnet, M. Belin, J.C. Auge, J.M. Martin, A.Grill, V. Patel, "Tribochemistry of diamond-like carbon coatings in various environments", Surface and Coatings Technology, Vol. 68-69 (1994) pp. 626-631.
22.C. Donnet, A.Grill, "Friction control of diamond-like carbon coatings" Surface and Coatings Technology, Vol. 94-95 (1997) pp. 456-462.
23.T. Le Huu, H. Zaidi, D. Paulmier, "Lubricating properties of diamon-like coating", Wear, Vol. 181-183 (1995) pp. 766-770.
24.K. Enke, H. Dimigen, H. Hubsch, "Frictional properties of diamondlike carbon layers", Applied Physics Letters, Vol. 36 No. 4 (1980) pp.291-292.
25.K. Miyoshi, J.J. Pouch, S.A. Alterovitz, "Plasma-deposited amorphous hydrogenated carbon films and their tribological properties", NASA Technical Memorandum, No.102379 (1989) pp. 215.
26.R. Memming, H.J. Tolle, P.E. Wierenga, "Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-actived chemical vapour deposition processⅡ: Tribological and mechanical properties", Thin Solid Films, Vol. 143 (1986) pp. 31-41.
27.D.H. Buckley, "Surface Effects in Adhesion, Friction, Wear and Lubrication", Elsevier, New York, (1981) pp. 574.
28.A. Grill, B. Meyerson, V. Patel, "Interface modifications for improving the adhesion of a-C:H films to metal", Journal of Materials Research, Vol. 3 (1988) pp. 214-217.
29.Y.L. Su, W.H. Kao, C.T. Wu, "Optimum Ti-C:H coatings on tungsten carbide inserts for milling applications", Journal of Materials Processing Technology, Vol. 108 (2000) pp. 30-39.
30.D.P. Monaghan, D.G. Teer, K.C. Laing, I. Efeoglu and R.D. Arnell, "Deposotion of graded alloy nitride films by closed field unbalanced magnetron sputtering", Surface and Coating Technology, Vol. 59 (1993) pp. 21-25.
31.M. Stuber, S. Ulrich, H. Leiste,A. Kratzsch, H. Holleck, "Graded layer design for stress-reduced and strongly adherent superhard amorphous carbon films", Surface and Coatings Technology, Vol. 116-119 (1999) pp. 591-598.
32.H. Dimigen, H. Hübsch, R. Memming, "Tribological and electrical properties of metal-containing hydrogenated carbon films", Applied Physics Letters, Vol. 50, No. 16 (1987) pp. 1056-1058.
33.C.-P. Klages, H. Koberle, M. Bauer, R. Memming, "Properties and microstructure of metal-containging a-C:H films", Proceedings of the First International Symposium on Diamond and Diamond-Like Films, (1989) pp. 225-236.
34.H. Dimigen, C.P. Klages, "Microstructure and wear behavior of metal-containging diamond-like coatings", Surface and Coating Technology, Vol. 49 (1991) pp. 543-547.
35.M. Wang, K. Schmidt, K. Reichelt, H. Dimigen, H. Hubsch, "Characterization of metal-containing amorphous hydrogenated carbon films", Journal of Materials Research, Vol. 7 (1992) pp. 667-676.
36.D. Klaffke, R. Wäsche, H. Czichos, "Wear behaviour of i-carbon coatings", Wear, Vol. 153 (1992) pp. 149-162.
37.M. Grischke, K. Bewilogua, H. Dimigen, "Preparation, properties and structure of metal containing amorphous hydrogenated carbon films", Materials and Manufacturing Processes, Vol. 8 (1993) pp. 407-417.
38.H. Sjöström, L. Hultman, J.-E. Sundgren, L.R. Wallengerg, "Microstructure of amorphous C:H and metal-containing C:H films deposited on steel substrates", Thin Solid Films, Vol. 232 (1993) pp. 169-179.
39.S.J. Bull and A. Matthews, "Diamond for wear and corrosion applications", Diamond and Related Materials, Vol. 1 (1992) pp. 1049-1064.
40.B. Oral, K.-H Ernst, C.J. Schmutz, "Adhesion and structural changes of multi-layered and multi-doped a-C:H films during annealing", Diamond and Related Materials, Vol. 5 (1996) pp. 932-937.
41.J.R. Shi, X. Shi, Z. Sun, S.P. Lau, B.K. Tay, H.S. Tan, "Resonant Raman studies of Tetrahedral amorphous carbon films", Diamond and Related Materials, Vol. 10 (2001) pp. 76-81.
42.P.A. Steinmann, Y. Tardy and H.E. Hintermann, "Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load", Thin Solid Films, Vol. 154 (1987) pp. 333-349.
43.佐野清人, 許政宗, "切削加工技術資料集", 世一書局, 民國七十四年, pp. 114.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top