跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志維
研究生(外文):Chin-Wei Chen
論文名稱:應變速率及銲接電流模式在304L不銹鋼電漿電弧銲接件之動態撞擊特性及顯微結構的效應分析
論文名稱(外文):The Effect of Strain Rate and Welding Current Mode on the Dynamic Impact Properties and Microstructre of Plasma Arc Welded 304L Stainless Steel
指導教授:李偉賢李偉賢引用關係
指導教授(外文):Woei-Shyan Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:157
中文關鍵詞:雙晶差排絕熱剪切電漿電弧銲接304L不□鋼霍普金森高速撞擊試驗機麻田散鐵
外文關鍵詞:martensiteadiabatic shear dand304L stainless steelHopkinson split pressure barplasma arc weldingdislocationtwin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是利用霍普金森高速撞擊試驗機來探討304L不□鋼電漿電弧銲接件於高速撞擊下之塑性變形行為,並比較定電流、脈衝電流兩組銲接件之差異。304L不□鋼以定電流及脈衝電流兩組銲接參數進行電漿電弧匙孔模態的對頭銲接,施銲後在銲道位置備製包含母材與銲道的壓縮試件,於室溫、應變速率 至 之範圍內進行撞擊實驗,以瞭解銲接參數、應變速率對動態機械特性及相對微觀組織變化之影響。
實驗數據分析顯示,304L不□鋼銲接件的機械性質受應變速率和應變量的影響非常顯著,其塑流應力值隨著應變速率的增加而快速的上升。其加工硬化係數會隨著應變量增加而有下降的趨勢,且應變速率愈高下降的幅度愈是明顯;另外應變速率敏感性係數隨著應變速率的增加而上升,同時與加工硬化應力有線性增加的關係,而熱活化體積的變化則有相反的趨勢。比較兩組銲接件得知,脈衝電流銲接件有較高的撞擊荷載強度,較高的加工硬化係數,較高的應變速率敏感性係數,及較小的熱活化體積。利用Zerilli-Armstrong 構成方程式以及實驗所得材料參數可以精確描述304L不□鋼定電流與脈衝電流銲接件在動態荷載下之塑性行為,作為工程分析與模擬之用。
由破壞特徵的分析,發現兩組304L不□鋼銲接件的破壞模式皆是由絕熱剪切所主宰,這些絕熱剪切帶會先發生在銲道與母材的界面並生成微裂縫,最後沿著最大剪應力方向傳播造成破壞。經由TEM微觀結構分析結果顯示銲接電流模式、應變速率對差排、 麻田散鐵與雙晶之數量及特徵有顯著的影響。在兩組銲接件中,差排密度與 麻田散鐵轉換量均隨著應變速率的增加而增加,且脈衝電流銲接件中的差排密度、 麻田散鐵皆較定電流銲接件的多;變形過程中產生的雙晶數量則因高應變速率下的溫升效應,隨著應變速率的增加而減少,而且脈衝電流銲接件中的雙晶數量較少。定量分析指出差排密度、 麻田散鐵的數量會隨加工硬化應力的增加而呈線性上升。
A split Hopkinson bar is used to investigate the effects of strain rate and welding current mode on the dynamic impact properties of plasma arc welded 304L stainless steel, and these results are correlated with microstructure and fracture characteristics. Annealed 304L stainless steel is welded by plasma arc welding(PAW) process variations, namely continuous current and pulse current, then machined as cylindrical compression specimens. Dynamic mechanical tests are performed at strain rates ranging from 1200 to 7700 at room temperature.
Results indicate that the mechanical properties and the microstructure largely depend on impact loading. Increasing the strain rate of impact loading increases both flow stress and strain rate sensitivity. However, the inverse tendency is observed for the activation volume. The results also show the greater flow stress, work hardening rate and strain rate senstivity of pulse current welds compared to those of continuous current welds. By using the proposed constitutive equation proposed by Zerrilli-Armstrong with the experimentally determined specific material parameters, the flow behaviour of pulse current welds and continuous current welds can be described successfully for the range of test conditions.
The effect of loading rate on mechanical response and impacted substructure of 304L stainless steel PAW welds are found directly related to dislocation density and the amount of martensite. OM and SEM fracture feature observations reveal that adiabatic shear band formation is the dominant fracture mechanism of both continuous and pulse current PAW welds of 304L stainless steel. Adiabatic shear band is initially formed near the fusion line and then crack occurs along the direction of maximum shear stress and induces specimen fracture. Microstructural observations reveal that the morphologies and characteristics of both dislocation substructure, mechanical twins, micro-shear bands and martensite formation, are strongly influenced by welding current mode and strain rate. At higher strain rate, greater dislocation density and more martensite transformation are observed, but a decay of twin density is showed. The microstructrues of continuous and pulse current welds are compared and their dynamic properties correlated. There are greater dislocation density and more martensite transformation in the pulse current welds and correspondingly they have higher flow stress under the dynamic deformation. Significant strengthening is found to result from dislocation multiplication and martensite transformation.
中文摘要.....................................I
ABSTRACT................................................................III
誌謝...........................................V
總目錄...................................................................VI
表目錄...................................................................XI
圖目錄..................................................................XII
圖目錄..................................................................XII
符號說明................................................................XIX
第一章 前言..............................................................1
第二章 理論與文獻回顧....................................................4
2-1材料銲接特性簡介......................................................4
2-1-1沃斯田鐵不□鋼之銲接特性............................................4
2-1-2沃斯田鐵不□鋼的銲接凝固行為........................................5
2-1-3肥粒鐵組織對沃斯田鐵不□鋼的影響....................................7
2-1-4肥粒鐵含量的估算....................................................7
2-2電漿電弧銲接法........................................................9
2-2-1電漿電弧銲接法簡介..................................................9
2-2-2電漿電弧銲接基本原理................................................9
2-2-3匙孔模態銲接........................................................10
2-2-4電漿電弧銲接之銲接參數..............................................10
2-2-5脈衝電流銲接簡介....................................................12
2-3一維波傳理論..........................................................12
2-4霍普金森桿原理........................................................14
2-5材料塑性變形行為之特性................................................17
2-6塑性變形之機械測試類別................................................19
2-7圓柱壓縮試驗法........................................................21
2-8材料變形構成方程式....................................................21
2-9 304L不□鋼之麻田散鐵變態過程.........................................24
2-9-1 bcc麻田散鐵與hcp麻田散鐵...........................................25
2-9-2 麻田散鐵的成長過程.................................................25
第三章 實驗方法與步驟....................................................34
3-1實驗流程..............................................................34
3-2實驗儀器與設備........................................................34
3-2-1電漿銲接設備........................................................34
3-2-2霍普金森動態撞擊試驗機..............................................35
3-2-3訊號處理裝置........................................................35
3-2-4壓縮試驗機..........................................................36
3-2-5磁性量測設備........................................................36
3-2-6光學顯微鏡(OM)......................................................36
3-2-7掃瞄式電子顯微鏡(SEM)...............................................36
3-2-8穿透式電子顯微鏡(TEM)...............................................37
3-2-9雙噴射式電解拋光機..................................................37
3-3實驗方法與步驟........................................................37
3-3-1銲接試件備製........................................................37
3-3-2電漿電弧銲接........................................................38
3-3-3壓縮試件規劃與備製..................................................38
3-3-4微硬度實驗..........................................................38
3-3-5肥粒鐵相量測........................................................38
3-3-6動態衝擊實驗........................................................39
3-3-7靜態壓縮試驗........................................................40
3-3-8麻鐵散鐵之量測......................................................41
3-3-9試件金相之觀察(OM)..................................................41
3-3-10破斷面之觀察(SEM)..................................................41
3-3-11穿透式電子顯微鏡(TEM)..............................................42
第四章 實驗結果與討論....................................................48
4-1銲接電流模式對304L不□鋼銲接件之影響分析..............................48
4-1-1母材金相組織分析....................................................48
4-1-2銲道與熱影響區金相組織分析..........................................48
4-1-3微硬度值分析........................................................50
4-1-4肥粒鐵含量分析......................................................50
4-2應力-應變曲線圖之討論.................................................50
4-3加工硬化率之討論......................................................51
4-4應變速率效應..........................................................52
4-5熱活化體積............................................................54
4-6理論昇溫量之探討......................................................55
4-7材料變形構成方程式....................................................56
4-8微觀組織..............................................................57
4-8-1破壞特徵分析........................................................57
4-8-2 TEM顯微結構分析....................................................60
4-9差排密度、雙晶密度與麻田散鐵之定量分析................................64
4-9-1差排密度定量分析....................................................64
4-9-2雙晶密度定量分析....................................................65
4-9-3麻田散鐵定量分析....................................................65
第五章 結論..............................................................123
5-1 304L不□鋼銲接件之動態撞擊特性.......................................123
5-2 304L不□鋼銲接件動態荷載下之顯微結構.................................123
參考文獻.................................................................125
1.Donald, Peckner, I. M. Bernstein: Stainless Steels, McGraw-Hill Publishing Company, 1977.2.R. A. Lula, J. Gordon Parr and Albert Hanson: “Stainless steel” Metals Park, Ohio: American Society for Metals, 1986.3.Ji Hyun Kim, Young Jin Oh, Il Soon Hwang, Dong Jin Kim, Jeong Tae Kim, “Fracture behavior of heat-affected zone in low alloy steel”, Journal of Nuclear Materials, Vol. 299, pp. 132-139, 2001.4.Yi-Cherng Lin, Kuo-Hsin Lee and Jen-Yane Perng, “Effect of welding parameters on residual stress relief in type 304 stainless steel”, Chinese Journal of Materials Science, Vol. 28, No. 2, pp. 98-103, 1996.5.G. Madhusudhan Reddy, T. Mohandas, K. K. Papukutty, “Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments”, Journal of Materials Processing Technology, Vol. 74, pp. 27-35, 1998.6.C. B. Reed, K. Natesan, Z. Xu, D. L. Smith, “The effect of laser welding process parameters on the mechanical and microstructural properties of V-4Cr-4Ti structural materials ”, Journal of Nuclear Materials, Vol. 283-287, pp. 1206-1209, 2000.7.J. S. Ku, N. J. Ho, S. C. Tjong, “Properties of electron beam welded SAF 2205 duplex stainless steel”, Journal of Materials Processing Technology, Vol. 63, pp. 770-775, 1997.8.羅騰玉, 楊廈森, 陳健成, 王基民, 陳國堅, 李文溪, “銅鎳合金與碳鋼、不□鋼之銲接研究”, 中船季刊, pp. 249-278, 民國79年。9.蔡履文, 陳鈞, 鄭勝文, “穿孔模態電漿銲接”, 銲接與切割, Vol. 3, No. 3, pp. 1-9, 民國82年。10.E. Craig, “The plasma arc process- a review”, Welding Journal, Vol. 67, No. 2, pp. 19-25, 1988.11.曾光宏, “電漿電弧銲接之原理與應用”, 銲接與切割, Vol. 9, No. 1, pp. 38-44, 民國88年。12.H. D. Steffens and H. Kayser, “Automatic control for plasma arc welding”, Welding Journal, Vol. 51, No. 6, pp. 408-418, 1972.13.H. B. Cary: Modern Welding Technology, Prentice Hall, 1979.14.S. Lathabai, B. L. Jarvis, K. J. Barton, “Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium”, Materials Science and Engineering: A, Vol. 299, pp. 81-93, 2001.15.鄭拯民, 蔡金泉, “電漿銲接法對各種金屬銲接施工之研究”, 中船季刊, pp. 197-235, 民國72年。16.T. Mohandas, G. Madhusudhan Reddy, “A comparison of continuous and pulse current gas tungsten arc welds of an ultra strength steel”, Journal of Materials Processing Technology, Vol. 69, pp. 222-226, 1997.17.G. J. Davies, J. G. Garland, “Solidification structures and properties of fusion welds”, International Metallurgical Reviews, Vol. 20, pp. 83-106, 1975.18.D. W. Becker, C. M. Adams, “The role of pulsed GTA welding variables in solidification and grain refinement”, Welding Journal, Vol. 58, No. 5, pp. 143s-152s, 1979. 19.曾光宏, “沃斯田鐵不□鋼銲接性之探討”, 機械技術雜誌, pp. 96-103, 民國87年。20.David LeRoy Olson, Thomas A. Siewert, Stephen Liu and Glen R. Edwards, “ASM Handbook: Volume 6 Welding, Brazing, and Soldering”, Materials Park, 1990.21.G. Lothongkum, P. Chaumbai, P. Bhandhubanyong, “TIG pulse welding of 304L austenitic stainless steel in flat, vertical and overhead positions”, Journal of Materials Processing Technology, Vol. 89-90, pp. 410-414, 1999.22.G. Lothongkum, E. Viyanit, P. Bhandhubanyong, “Study on the effect of pulsed TIG welding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of 316L stainless steel plate”, Journal of Materials Processing Technology, Vol. 110, pp. 233-238, 2001.23.A. Celik and A. Alsaran, “Mechanical and structural properties of similar and dissimilar steel joints”, Materials Characterization, Vol. 43, pp. 311-318, 1999.24.M. Sireesha, V. Shankar, Shaju K. Albert, S. Sundaresan, “Microstructural features of dissimilar welds between 316LN austensitic stainless steel and alloy 800”, Materials Science and Engineering A, Vol. 292, pp. 74-82, 2000.25.T. Takalo, N. Suutala, T. Moisio, “Austenitic solidification mode in austenitic stainless steel welds”, Metallurgical transaction A, Vol. 10A, pp. 1173-1181, 1979.26.W. T. Delong, G. A. Ostrom, E. R. Szumachowski, “Measurement and calculation of ferrite in stainless-steel weld metal”, Supplement of the welding journal, No. 16,pp. 521s-528s, 1956.27.黃祺祥, 陳宏志, “不□鋼銲接研究之探討(Ⅰ)”, 銲接與切割, Vol. 8, No. 2, pp. 48-55, 民國87年。28.P. E. Manning, D. J. Duquette and W. F. Savage, “Technical note: The effect of retained ferrite on localized corrosion in duplex 304L stainless steel”, Welding Journal, Vol. 59, No.9, pp. 260s-262s, 1980.29.Byung Sup Pho, Hyun Uk Hong and Soo Woo Nam, “The effect of -ferrite on fatigue cracks in 304L steels” International Journal of Fatigue, Vol. 22, pp. 683-690, 2000.30.Tetsumi Yuri, Toshio Ogata, Masahiro Saito, Yoshiaki Hirayama, “Effect of welding structure and -ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures”, Cryogenics, Vol. 40, pp. 251-259, 2000.31.周漢標, 廖德潭, 洪文山, “沃斯田鐵不□鋼之銲接特性及熱裂分析(上)”, 機械月刊, Vol. 18, No. 2, pp. 155-171, 民國81年。32.楊山毅, 周長彬, ”銲接參數對沃斯田型不□鋼固化現象與熱裂性之影響”, 銲接與切割, Vol. 5, No. 5, pp. 1-12, 民國84年。33.J. A. Brooks and A. W. Thompson, “Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-44, 1991.34.W. J. Mills, “Fracture toughness of type 304 and 316 stainless steels and their welds”, International Materials Reviews, Vol. 42, N0. 2, pp. 45-82, 1997.35.Fyfe, I.M., in U.S.Lindholm, (Ed), "Mechanical behaviour of materials under dynamic loads, Springer-Verlay, New York, p. 314, 1968.36.Clifton, R.J., Gilat, A., and Li, C.H., "Material behaviours under high stress and high loading rates", plenum publishing corp., p. l, 1983.37.D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys”, Vol. Ⅲ, ASM, pp. 951, 1970.38.D Sundararaman, R Divakar, V S Raghunathan, “Microstructural features of a type 304L stainless steel deformed at 1473K in the strain rate interval 10-3 s-1 to 102 s-1”, Scripta Metallurgica et Materialia, Vol. 28, pp. 1077-1082, 1993.39.D. P. Harvey II, J. B. Terrell, T. S. Sudarshan, M. R. Louthan, “Participation of hydrogen in the impact behavior of 304L stainless steel”, Engineering Fracture Mechanics, Vol. 46, No. 3, pp. 455-464, 199340.Woei-Shyan Lee, Chi-Feng Lin, “The morphologies and characteristics of impact-induced martensite in 304L stainless steel”, Scripta Materialia, Vol. 43, pp. 777-782, 2000.41.K. A. Johnson, L. E. Murr and K. P. Staudhammer, “Comparison of residual microstructures for 304 stainless steel shock loaded in plane and cylindrical geometries: implications for dynamic compaction and forming” ,Acta Metall. Vol. 33, No. 4, pp. 677-684, 1985.42.J. Y. Choi and W. Jin, “Strain induced martensite formation and its effect on strain hardening behaviour in the cold drawn 304 austenitic stainless steels” Scripta Materialia, Vol. 36, No. 1, pp. 99-107, 1997.43.L. E. Murr, K. P. Staudhammer and S. S. Hecker, “Effect of strain and strain rate on deformation-induced transformation in 304 stainless steel: part2. Microstructural study”, Metallurgical Transactions A, Vol. 13A, pp. 627-635, 1982.44.K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless :a transmission electron microscope study”, Acta Metallurgica, Vol. 31, No. 2, pp. 267-274, 1983.45.M. Gerland, M. Hallouin, “Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses”, Journal of Materials Science, pp. 345-351, 1994.46.曾光宏, “沃斯田不□鋼銲接金屬熱影響區銲接性之研究”,國立交通大學機械工程研究所碩士論文, 中華民國七十八年六月。47.謝榮淵, “不□鋼之銲接特性(I)”, 銲接與切割, 第七卷第五期, pp. 40-49, 民國86年9月。48.D. L. Olson, “Prediction of austenitic weld metal microstructure and properties”, Welding Research Supplement, October, pp. 281s-295s, 1985.49.J. Ginsztler, I. Meszaros, L. Devenyi, B.Hidasi, J. H. Potogieter, “Magnetic investigations of stainless steels”, Int. J. Pres. Ves. & Piping, Vol. 61, pp. 471-478, 1995.50.郭聰源, “鎳基690合金銲接特性研究”,國立成功大學機械工程研究所博士論文, 中華民國八十八年元月。51.王維誠, 蔡履文, 陳均, 鄭勝文, “電漿銲接製程變數研究”, Chinese Journal of Materials Science, Vol. 23, No. 2, pp. 108-114, 1991.52.U. S. Lindholm and L. W. Yeakly, “High strain rate tension and compression”, Exp. Mech., Vol. 3, pp. 81-88, 1983.53.M. A. Meyers, Elastic Waves, “Dynamics behavior of materials”, Jhon Wiely & Son, pp. 23-65, 1994.54.Jonas A. Zukas, Theodore Nicholas, Hallock F. Swift, Longin B. Greszczuk, Donald R. Curran, Impact Dynamics, John Wiley & Sons, pp. 287, 1981.55.J. D. Campbell, “Dynamic plasticity-macrosopic and microscopic aspects”, Mat. Sci. Eng., Vol. 12, pp. 3-21, 1973.56.D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.57.J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel”, Phil. Mag., Vol. 21, pp. 63-82, 1970.58.A. Seeger, “Dislocation and mechanical properties of crystals”, Phil. Mag., Vol. 46, pp. 1194-1217, 1955.59.U. S. Lindholm and L. M. Yeakly, “Dynamic deformation of single and polycrystalline aluminum”, J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.60.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation damping in aluminum at high strain rates”, J. Appl. Phys., Vol. 38, No. 4, pp. 1863-1869, 1967.61.J. D. Campbell and A. R. Dowling, “Behaviour of materials subjected to dynamic incremental shear loading”, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970.62.Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press.63.R. D. Curran, L. Seaman and D. A. Shockey, “Linking dynamic fracture to microstructural process, shock wave and high-strain- rate phenomena in metal: Concepts and Applications”, pp. 22-26, 1980.64.U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.65.G. E. Dieter, Workability Testing Techniques, pp. 57-59, Metals Park, Oh: ASM, 1984.66.M. L. Lovato, and M. G. Stout, “Compression testing techniques to determine the stress/strain behaviour of metals subject to finite deformation”, Metall. Trans. A., Vol. 23A, pp. 935-951, 1992.67.J. C. Gelin, J. Oudin, and Y. Ravalard, “Determination of the flow stress-strain curve for metals form axisymmeetric upsetting”, J. of Mech. Work. Tech., Vol. 5, pp. 297-308, 1981.68.Riqiang Liang, Akhtar S. Khan, “A critical review of experimental results and constitutive models for BCC and FCC metals metals over a wide range of strain rates and temperature.” International journal of plasticity, Vol. 15, pp.963-980, 1999.69.W. Johnson, Impact Strength of Material, Edward Arnold, pp.134-135, 1972.70.L.E. Malvern, J Appl. Mech., Vol.18, pp. 261-281, 1951.71.J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, “Fundamental aspects of structural alloy design”, Plenum Publishing Corp. New York, pp545-563, 1977.72.J. Duffy, Proc. Workshop on Shear Localization, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.73.H. Kobayashi and B. Dodd, “A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth”, Int. J. Impact Eng., Vol. 8, pp. 1-13, 1989.74.F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based constitutive relations for material dynamics calculations”, J. Appl. Phys., Vol. 61, pp. 1816-1825, 1987.75.F. J. Zerilli and R. W. Armstrong, “The effect of dislocation drag on the stress-strain behavior of F.C.C metals”, Acta metal. Mater., Vol. 40, No. 8, pp.1803-1808, 1992.76.F. J. Zerilli and R. W. Armstrong, “Constitutive equation for HCP meatls and high strength alloy steels”, High strain rate effects on polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.77.R. W. Klopp, R. J. Clifton and T. G. Shawki, Pressure Shear Impact and Dynamic Viscoplastic Response of Metals, Mechanics of Materials: an International Journal, Vol. 4, pp.375-385, 1985.78.M. Zhou, A. Needleman and R. J. Clifton, “Finite element simulations of shear localization in plate impact”, J. Mech. Phys. Solids, Vol. 42, pp. 423-458, 1994.79.G. E. Dieter, “Thermally activated deformation, mechanical metallurgy”, pp. 310-315, 1988.80.Emin Bayraktar, Sabri Altintas, “Some problems in steel sheet forming processes”, J. Mat. Process. Technol., Vol. 80-81, pp. 83-89, 1998.81.陳宏志, 銲接結構強度學, 高雄復文圖書出版社, pp.98-99, 1995.82.R. K. Ham, Phil. Mag., Vol. 6, pp. 1183, 1961.83.D. C. Ludwigson, “Modified stress-strain relation for F.C.C. metals and alloys”, Metall. Trans., Vol. 2, pp. 2825-2828, 1971.84.Sindo Kou: Welding Metallurgy, Wiley, New York, 1987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top