(54.236.62.49) 您好!臺灣時間:2021/02/26 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐偉程
研究生(外文):Wei-Cheng Hsu
論文名稱:應用虛擬實境技術於多軸工具機切削運動之研究
論文名稱(外文):Study on Cutting Motion of Multi-axis Machine Tool by Virtual Reality
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:多軸工具機虛擬實境切削運動
外文關鍵詞:Multi-axis Machine ToolCutting MotionVirtual Reality
相關次數:
  • 被引用被引用:30
  • 點閱點閱:454
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:2
  從設計到製造的每一個決策都需要依賴工程師的專業知識作判斷,任何一個決策錯誤都會導致多餘的成本與延遲上市時間,如果在每一個決策階段都有適當的輔助決策機制提供適當的資訊,整個生產過程就會變得更順利。虛擬實境是一種有用的工具,它可以用來檢視產品的製造過程,因此便可以在第一時間考慮到其產品的可製造性。

  本論文主旨為利用WTK建立一虛擬多軸工具機之工作環境與介面,提供使用者進行切削運動之模擬。工具機的機型是以工作台傾斜型(u、w)之五軸雕模機為例,系統內部建立其專屬的後處理程式。在動態模擬上本文採用線性差值的方式,來呈現工具機的運動。使用者可經由虛擬工具機的方向控制鍵,進行手動調整,或輸入NC File來進行自動加工的模擬。在碰撞檢測方面,本文採用包絡盒的方式進行檢測,目的是除了可以預測出可能碰撞的位置外,亦可確保模擬時工具機運動的流暢度,碰撞檢測的結果會以及時顯示的方式或是以檔案的方式告知使用者發生碰撞的位置。透過上述的功能,使用者可以經由視窗觀察加工過程工具機模擬切削運動情形,並可判斷出可能發生工具機碰撞的情形及發生碰撞的位置。

  本系統將可應用在加工程序的規劃與製程的預視,達到縮短產品製程的時間,進而提升產品競爭力。
  There are many important decisions to be made from the design stage to the manufacturing stage of the product development, each has great effect on production cost and time-to-market. Engineers make these decisions by their expertise. If there is information provided to help engineers making decisions, the whole process will be smoother and the time-to-market can be reduced. The virtual-reality technique can be used to verify manufacturing process and evaluate manufacturability in advance.

  The objective of this research is to construct a virtual multi-axis machine tool environment and interface for kinematic simulation of machine tool . The configuration of the virtual machine is based on rotary table type five-axis sculpturing machine. The postprocessor is implemented in the simulation system. The kinematics of the virtual machine is represented by linear interpolation. Users can perform manual operation by the direction buttons on the control panel or import NC file to perform automatic machining. Bounding box technique is used to perform collision detection, which has the advantage of detecting collision quickly while maintaining the smoothness of simulation. The result of collision detection can be shown real-time or saved into file to inform the user. With the provided functions of the developed software system, the user can verify the kinematics of the machine tool and identify possible collision between machine tool and workpiece.

  The developed system can be used for process planning and preview to reduce planning time and to increase competitiveness.
總目錄

中文摘要 I
ABSTRACT II
總目錄 III
圖目錄 V
表目錄 VII

第一章 緒論 1
  1-1 概述 1
  1-2 研究目的與範疇 2
  1-3 論文架構 3

第二章 文獻回顧 4
  2-1 虛擬實境 4
  2-2 虛擬製造應用與技術 8
  2-3 後處理程式 13

第三章 座標轉換原理與五軸加工後處理程式設計 15
  3-1 座標轉換矩陣 15
    3-1-1 基本座標轉換矩陣 15
    3-1-2 繞任意軸旋轉之轉換矩陣 21
    3-1-3 尤拉角轉換(Euler Angle Representations) 22
  3-2 後處理程式設計 23
    3-2-1 後處理程式概述 23
    2-2-2 五軸加工之幾何定義與形式分類 24
    3-2-3 工作台傾斜型的五軸工具機後處理 29

第四章 虛擬製造系統架構 34
  4-1 系統設計需求 34
  4-2 系統開發工具 36
    4-2-1 系統硬體 36
    4-2-2 系統軟體 36
  4-3 工具機模型建構 40
  4-4 虛擬多軸工具機系統人機介面架構 45
  4-5 工具機動態模擬 57
  4-6 系統操作程序 60
  4-7 碰撞檢測模式 62

第五章 結果與討論 64
  5-1 BEZIER曲面建構與NC程式產生結果與討論 64
  5-2 虛擬製造系統模擬加工結果與討論 66

第六章 結論與建議 71
  6-1 結論 71
  6-2 建議 72

參考文獻 74


圖目錄
圖2-1虛擬實境軟硬體架構組合 6
圖2-2虛擬製造與真實製造之比較 9
圖3-1 座標系統轉換關係圖[34] 17
圖3-2 座標系統轉換示意圖[34] 20
圖3-3 尤拉角轉換 22
圖3-4 CAM系統、工具機與後處理之關係圖 26
圖3-5 五軸加工之幾何學意義 26
圖3-6 機械座標軸定義 27
圖3-7 基本的五軸工具機分類 27
圖3-7 基本的五軸工具機分類 (續) 28
圖3-8主軸傾斜型五軸工具機結構與元件流程圖 31
圖4-1 WTK標準迴圈流程 39
圖4-2 虛擬機房 40
圖4-3 虛擬工具機U(第二)旋轉軸 41
圖4-4 虛擬工具機W(第二)旋轉軸 41
圖4-5 虛擬工具機Y軸 41
圖4-6 虛擬工具機的階層架構圖 42
圖4-7 虛擬環境建構流程圖 43
圖4-8 建構完成的虛擬多軸工具機外觀 44
圖4-9 虛擬工具機主要物件關係圖[30] 46
圖4-10 虛擬工具機視窗介面 46
圖4-11 運動控制框架功能表示圖 47
圖4-12 功能鍵功能示意圖 48
圖4-13 自動加工之工作流程圖 49
圖4-14 File選單 50
圖4-15 NC File對話視窗 50
圖4-16 後處理選單 53
圖4-17 後處理程式初始參數設定 53
圖4-18 輸入CL File對話視窗 53
圖4-19 CL File轉NC File流程圖 54
圖4-20 File選單 55
圖4-21 Export NC code對話視窗 55
圖4-22 Step Set 選單 56
圖4-23 設定Step參數的對話視窗 56
圖4-24 狀態列 56
圖4-25 NC File格式 57
圖4-26 線性內插示意圖 58
圖4-27 Motion Function工作流程示意圖 59
圖4-28 系統操作流程 61
圖4-29 碰撞檢測模組選擇 62
圖4-30 發生碰撞時的警告視窗 63
圖4-31 碰撞檢測記錄檔 63
圖5-1 Bezier曲面模型 64
圖5-2 Bezier曲面之CL File 65
圖5-3 Bezier曲面之NC File 65
圖5-4 Bezier曲面第一道次加工前虛擬工具機與工件實體切削對照圖 66
圖5-5 Bezier曲面第一道次加工後虛擬工具機與工件實體切削對照圖 67
圖5-6 Bezier曲面第二道次加工後虛擬工具機與工件實體切削對照圖 68
圖5-7 Bezier曲面加工完成虛擬工具機與工件實體切削對照圖 69


表目錄
表5-1 BEZIER曲面控制點 64
1.Shukla, C., M. Vazquez, and F. F. Chen, “Virtual manufacturing:an Overview”, Journal of Future Generation Computer System, Vol. 31, No1-2, pp. 79-82, 1996.

2.Cobb, Sue V.G., Mirabelle D. D’Cruz and John R. Wilson,”Integrated manufacture: A role for virtual reality,” Journal of Ergonomics, Vol. 16, No. 4-6, pp. 411-425, 1995.

3.Vince,J., “Virtual Reality System,” Adsion-Wesley Publishing Company, pp.159-163, pp.166-168, 1995.

4.Sutherland, V.E., “The Ultimate Display,” Proceedings of the IFIP Conference 65, pp.506-509.

5.Gossweilier, R., Long, C., Koga, S. and Pausch, R., “DIVER : a DIstributed Virtual Environment Research Platform,” IEEE Symposium on Research Frontiers in Virtual Reality, pp. 10-15, October, 1993.

6.Cruz-Neira, C. et al., “Scientists in Wonderland:A Report on Visualization Applications in the CAVE Virtual Reality Environment,” IEEEE Symposium on Research Frontiers in Virtual Reality,” pp.59-66, October, 1993.

7.McCarty, W.D., S. Sheasby, P. Amburn, M.R. Stytz, and C. Switzer, “A Virtual Cockpit for a Distributed Interactive Simulation,” IEEE Computer Graphics&Applications, Vol. 14, No. 1, pp.49-54, Jan, 1994.

8.Tustar, H. and G. Rajit, “COVIRDS:A Conceptual Virtual Design System,” Proceeding of the 1995 ASME Computers in Engineering Conference and the Engineering Database Symposium, pp.959-966, 1995.

9.Peng, Q., F. R. Hall and P. M. Lister, “Application and evaluation of VR-based CAPP system”, Journal of Material Processing Technology, Vol. 107, pp. 153-159, 2000.

10.Iuliano, M. and A. Jones, “Controlling activities in a virtual manufacturing cell,” Proceedings of Winter Simulation Conference, pp. 1062-1067, 1996.

11.Pere, E., N. Langrana, D. Gomez and G. Burdea, “Virtual Mechanical Assembly on a PC-Based System,” Proceeding of the 1996 ASME Design Engineering Conference, August, Irvine, California, 1996.

12.McLean, C. R.”Modeling production system using virtual reality techniques,” Proceeding of IEEE on System, Man, and Cybernetics, Vol.1, pp. 344-347, 1998.

13.Lefort, L. and T. Kesavadas, “Interactive Virtual Factory Design of Shopfloor Using Single Cluster Analysis,” Proceedings of IEEE on Robotics and Automation, Vol. 1, pp.266-271, 1998.

14.Lombardo, J. C., M. P. Cani and F. Neyret, “Real-time Collision Detection for Virtual Surgery”, IEEE, 1999.

15.Tzeng, H. W. and C. M. Tien, “Design of a Virtual Laboratory for Teaching Electric Machinery,” Proceedings of IEEE on Systems, Man, and Cybernetics, Vol.2, pp.971-976, 2000.

16.Carpenter, I.D., J.M. Ritchie, R.G. Dewar and J.E.L. Simmons, “Virtual manufacturing, ” Manufacturing Engineer, Vol.76, Issue: 3, 1997.

17.Hanwu, H., X. Youlun, Y. Shuzi and W. Bo, “Virtual manufacturing systems and environment,” Proceedings of IEEE on Industrial Technology, pp. 13-24, 1996.

18.Steffan, R., U. Schull, and T. Kuhlen, “Integration of virtual reality based assembly simulation into CAD/CAM environments,” Proc. of 24th Annual Conference of the IEEE Industrial Electronics Society, Vol. 4, pp. 2535-2537, 1998.

19.Carpenter, I.D., J.M. Ritchie, R.G. Dewar, J.E.L. Simmons, “Virtual manufacturing,” Manufacturing Engineer, Vol. 76, Issue 3, pp 113-116, 1997.

20.Lanzagorto, M.; R. Rosenberg, L.J. Rosenblum, and E.Y. Kuo, “Rapid prototyping of virtual environments, ” Computing in Science & Engineering, Vol. 2, Issue 3, pp. 68-73, 2000.

21.Seo, Y., T.H. Choi, and S.H. Suh, “Web-based Implementation of Virtual Machine Tools,” Proc. of the 4th Korea-Russia Int’l Symp on Science and Tech, pp. 122-127 vol. 3, 2000.

22.Kalawsky, Roy S., The Science of Virtual Reality and Virtual Environments, Addison Wesley, pp. 330, 1994.

23.Burdea, G. and P. Coiffet, Virtual Reality Technology, John Wiley and Sons, Inc., pp. 331-332, 1993.

24.Hitchcick, M.F., A.D. Baker, and J.R. Brink, “The Role of Hybrid System Theory in Virtual Manufacturing,” Proceedings of IEEE on Computer-Aided Control System Design, pp.345-350, 1994.

25.Jayaram, S., U. Jayaram, Y. Wang, and H. Tirumali, “VADE: A Virtual Assembly Design Environment,” IEEE Computer Graphics & Applications, Vol. 19, No. 6, pp. 44-50, November/December 1999.

26.Bedi, S. and G. W. Vickers, “Postprocessor for Numerically Controlled Machine Tools”, Computers in Industry, Vol. 9, No. 1, pp. 3-18 (1987).

27.Balaji, B. K., Development and Interface of a Postprocessor for a CNC Mill, Master Thesis, California State University, Long Beach, USA, December (1993).

28.Lin, P. D. and M. B. Chu, “Machine Tool Settings for Manufacture of Cams with Flat-face Followers”, International Journal of Machine Tools and Manufacture, Vol. 34, No. 8, pp. 1119-1131 (1994).

29.Stute, G. and H. Damsohn, “Special Problems in Postprocessing of Multi-axis Milling Machines”, Proceedings of the Second IFIP/IFAC International Conference on Programming Languages for Machine Tools, PROLOMAT ‘73, pp. 737-746 (1973).

30.Vickers, G. W., S. Bedi and R. Haw, “The Definition and Manufacture of Compound Curvature Surfaces Using G-surf”, Computers in Industry, Vol. 6, No. 3, pp. 173-183 (1985).

31.Suh, S. H. and K. S. Lee, “A Prototype CAM System for Four-axis NC Machining of Rotational-Free-Surfaces”, Journal of Manufacturing Systems, Vol. 10, No. 4, pp. 322-331 (1991).

32.Zahner, S. P., “The Value of BCL to the CAD/CAM User”, Modern Machine Shop, Vol. 64, No. 2, pp. 72-80 (1991).

33.Chang, C. H. and M. A. Melkanoff, NC Machine Programming and Software Design, Prentice-Hall, New Jersey (1989).

34.Holi, Toshio and Yuichi Komazawa, “The Function and Application of Smart Motion Controller”, Mechanical Engineering, Vol. 43, No. 13, pp. 61-65 (1995). (in Japanese)

35.EIA Standard RS-267-B: Axis and Motion Nomenclature for Numerical Controlled Machines, Washington, D.C.: Electronic Industries Association, June (1983).

36.ISO Standard 841-1974, Axis and Motion Nomenclature for Numerical Controlled Machines, Geneva, Switzerland: International Organization for Standardization (1974).

37.Sakamoto, S. and I. Inasaki, “Analysis of Generating Motion for Five-axis Machining Centers”, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 59, No. 561, pp. 1553-1559 (1993).

38.Sense 8 Corporation, “WorldToolKit Reference Manual R9,” Sense 8 Corporation, pp.2-6, 1999.

39.徐鵬盛, “虛擬實境之多軸工具機運動研究,” 碩士論文, 國立成功大學機械工程研究所, 90年7月.

40.李景華, “三度空間虛擬實境的核心技術—3D電腦繪圖,” 資訊與電腦, pp.91-93, 1996年12月.

41.佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究,” 博士論文, 國立成功大學機械工程研究所, 86年.

42.李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究,” 博士論文, 國立成功大學機械工程研究所, 90年.

43.梁日輝, “最小侵入式醫療用機械臂之設計與運動模擬系統,” 碩士論文, 國立成功大學機械工程研究所, 88年.

44.李榮顯, “數值控制機械,” 三民書局, pp.57, pp.347, 1991年2月

45.侯俊傑, ”Visual C++ 物件導向MFC程式設計-基礎篇,” 旗標出版有限公司, pp.56-58, pp.77-79, 1994年8月.

46.位元文化研究室, “精通視窗程式設計,” 文魁資訊股份有限公司, pp.6-4, 2000年9月.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔