(3.238.186.43) 您好!臺灣時間:2021/02/28 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李軒圃
研究生(外文):Xuan-Pu Li
論文名稱:光纖多工感測系統研發與生化電解質濃度監測
論文名稱(外文):Development of Fiber-Optic Based Multi-functional Sensors for Biochemical Electrolyte Monitoring
指導教授:賴新一
指導教授(外文):Hsin-Yi Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:164
中文關鍵詞:溶膠凝膠法浸漬覆膜法漸衰波理論Lambert-Beer原理Maxwell理論
外文關鍵詞:sol-gel methodevanescent wave theoryMaxwell theorydip-coating methodLambert-Beer theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  人體內目前已知可以被定量檢測出來的電解質約有六十多種,但是在體液臨床生化檢驗過程中,最常被用來作為體液檢測以診斷疾病的電解質,大體上只有鈉,鉀,鈣,氯,鎂,鋅,鐵等數種元素。上述這些電解質的濃度與人體內分泌,肝臟及腎臟等疾病,有非常密切的關係,故常被醫學界用作判斷病情的依據。人體內的電解質濃度很少失衡,當電解質濃度發生異常時,病人極可能已罹患內分泌或肝腎相關之重大疾病,必須立刻住院檢測並加以治療。目前臨床生化電解質常用的定量檢測方法中有火燄比色法,離子選擇電極法與離子層析法。火燄比色法通常需要使用丙烷或天然氣與壓縮之空氣作為燃料,然而火燄穩定性是相當難以控制的。離子層析法及離子選擇電極法雖然可以同時對兩種電解質作檢測,但是當其溶液中之水的含量降低,離子的活性將受到改變而影響了電極的量測電位。上述這些傳統生化電解質定量檢測方法都不盡理想。因此本文擬研發一套以光纖為主,穩健且可以同時量測多種電解質濃度的臨床用系統,以提昇生化電解質濃度多工量測監控穩定度,解析度,及量測速度。
  目前市面上一般的光纖式感測系統大多以單工量測為主,因此本文開發了溶膠凝膠法與浸漬覆膜法等技術,藉由特定敏感元素所組成的感測膜元件加以串聯,以達成易拆裝多工感測的目標。為了技術的拓展與傳承,本文更進一步將此光纖生化多工感測過程,配合漸衰波理論,Beer-Lambert原理及Maxwell理論,推導建立一套完整可行的理論及實踐步驟,並透過實作結果,調整參數以作為今後發展各式光纖生化感測器之理論依據。
  本文所建立的理論模型與光纖生化多工感測系統,成果包括:(1)建立光纖式多工理論模型預估樣本之離子濃度,(2)光纖式多工實測系統可以鑑定樣本中離子種類並檢測其濃度,(3)將光纖式多工實測系統應用於尿液檢測,使領域擴展至醫學與生化方面,(4)本文所發展的感測槽可以同時對多種離子進行檢測,(5)溶膠凝膠法與浸漬覆膜法製作方便且成本低廉,可推廣應用於樣本中不同成份的量測。
  There have been more than sixty different types of electrolytes that can be quantitatively determined and analyzed from the body fluids of human beings so far. However, only several kinds of these electrolytes are often used for diseases diagnosis. These include sodium, potassium, calcium, chlorine, magnesium, zinc, iron, etc. The types and concentrations of these electrolytes obtained from body fluids of human patients are essentially used to compared and to diagnose diseases of endocrinopathy, liver complaint, nephropathy, and so forth. The concentrations of electrolytes in body fluids seldom encounter unbalanced. When concentrations of electrolytes are abnormal, it may result in from ill-balanced feeding or anorexia. Very possibly, the human body has suffered from serious illness, or may be in danger. The patient has to be hospitalized immediately.
  The traditionally-used quantitative analysis methods for clinical biochemistry inspection include the emission flame method, the ion selective electrode method, and the ion chromatographic determination method. The emission flame method employs propane or natural gas for heating, in which flame stability is a challenging problem. Although the ion selective electrode method and the ion chromatographic determination method can be simultaneously used to experiment with two electrolytes, the reduction in solutions may change the activity of ions and influence electric potential of electrode. Consequently the development of a fiber-optic based multi-functional sensors for biochemical electrolyte monitoring becomes desperately needed. The system proposed in this paper can enhance not only the stability and resolution but also the speed of measurement.     Traditional optical fiber sensors for electrolyte monitoring can only be used on sensing a single or two different functional ion elements so far. However, by using both the sol-gel and the dip-coating techniques, the proposed system can be used to multi-functional sensors for simultaneous measurement of different types of electrolytes.
  In order to develop the analytical model for the multifunctional fiber-optic sensors, the evanescent wave theory, Maxwell theory, and Lambert-Beer theory are used to figure out the types and the corresponding concentrations of various electrolytes. Once the parameters of the system, the environment, and the processes are input to the analytical model, the variation of light intensity before and after sensing layers can be obtained. Concentrations of multiple electrolytes can then be estimated by using the variation of light intensity. The relation between the concentrations and the variations of light intensity can be obtained to establish the sensitivity curve for electrolyte typing characterization.
  The contributions of the fiber-optic based multi-function sensing system are narrated as follows:(a) a multi-functional optical-fiber modeling procedure is developed and used to estimate the composition and concentration of ions, (b) an experimental multi-functional optical-fiber sensing system is established and used to measure the compositions and concentration of ions for various samples, (c) the experimental multi-functional sensing system is used for urinous measuration and the application is extended for iatrology and bio-chemistry, (d) the sensing slot make the system to measure concentraion of several ions at the same time, (e) the sensing components prodeued by Sol-Gel and deep-coating methods reduce the cost and increase the convenience.
中文要摘………………………………………………I
英文摘要………………………………………………II
致謝……………………………………………………III
目錄……………………………………………………IV
圖目錄…………………………………………………VIII
表目錄…………………………………………………XI
符號說明………………………………………………XIV

第一章 緒論……………………………………………1
1.1 研究動機…………………………………………1
1.2 研究目的…………………………………………5
1.3 研究方法…………………………………………6
1.4 章節瀏覽…………………………………………7
第二章 文獻回顧與研究流程…………………………9
2.1 文獻回顧…………………………………………9
2.1.1離子濃度感測系統之研究回顧…………………9
2.1.2光纖單工離子量測系統之研究回顧……………10
2.1.3敏感元素之研究回顧……………………………12
2.1.4光纖生化感測器之研究回顧……………………14
2.1.5螢光法之研究回顧………………………………17
2.2 本研究之基本假設………………………………19
2.3 本研究之基本流程………………………………20
第三章 光纖多工生化電解質感測理論模型…………23
3.1 光纖多工生化電解質感測之基本原理…………23
3.2 感測前後光強度之理論估算……………………26
3.2.1以電場強度值估算感測前光強度………………26
3.2.2以漸衰波理論估算感測後光強度………………30
3.3 以敏感元素吸附估算電解質濃度之理論………32
3.4 以吸附物質濃度與光強度變化估算生物體中離
子之濃度………………………………………………34
3.4.1鉀離子濃度估算理論……………………………35
3.4.2鈉離子濃度估算理論……………………………39
3.4.3鈣與鎂離子濃度估算理論………………………42
3.5 非待測離子對多工量測之干擾探討……………43
3.6 光纖多工感測之理論模擬流程…………………47
第四章 實驗設備與方法步驟…………………………50
4.1 光纖多工生化感測實驗原理……………………51
4.2 實驗步驟(一):感測元件的製作……………51
4.2.1感測膜的調製……………………………………51
4.2.2光纖蝕刻處理……………………………………52
4.2.3浸漬覆膜法………………………………………53
4.3 實驗步驟(二):樣本的準備…………………54
4.3.1水溶液樣本調配步驟……………………………55
4.3.2尿液樣本的準備步驟……………………………55
4.4 實驗步驟(三):系統的測試…………………56
4.4.1空白實驗與儀器校準……………………………56
4.4.2樣本試驗與準度評估……………………………57
4.5 實驗步驟(四):數據擷取與處理……………58
4.6 實驗之系統架構…………………………………60
4.6.1樣本液體混成子系統……………………………63
4.6.2離子濃度檢測子系統……………………………64
4.6.3電腦資料擷取與分析子系統……………………66
第五章 理論分析與實驗結果之印證…………………68
5.1 實驗準備作業與系統校正之結果………………68
5.1.1系統測試與校準之結果…………………………68
5.1.2光纖蝕刻之實驗結果……………………………69
5.1.3溶膠凝膠法之配製結果…………………………71
5.2 自調配樣品之理論與實驗結果比對……………74
5.2.1自調配樣品配製方法與濃度校正………………74
5.2.2自調配樣品理論估算之結果……………………77
(a) 自調配單工離子濃度理論估算結果……………77
(b) 自調配樣品多工離子濃度理論估算結果………91
(c) 自調配樣品單工與多工離子濃度理論結果比較
…………………………………………………………100
5.2.3自調配樣品實驗資料與分析之結果……………104
(a) 自調配樣品單工實驗量測之結果………………104
(b) 自調配樣品多工實驗量測之結果………………108
(c) 自調配樣品單工量測與多工量測結果之比對…100
5.2.4自調配樣品之理論,文獻與實驗結果驗證……118
(a) 自調配樣品理論估算與文獻資料之印證………118
(b) 自調配樣品實驗結果與文獻資料之印證………121
(c) 自調配樣品理論與實驗結果比對………………126
5.3 人體尿液樣品之理論與實驗結果比對…………129
5.3.1人體尿液樣品鉀鈉離子單工與多工理論估算結 果………………………………………………………129
(a) 人體尿液樣品單工理論估算結果………………130
(b) 人體尿液樣品多工理論估算結果………………136
(c) 人體尿液樣品單工與多工理論估算比較結果…141
5.3.2人體尿液樣品實驗資料與分析之結果…………144
5.3.3人體尿液樣品之理論與實驗結果驗證…………150
5.4 以離子濃度推估可能病因與病源………………153
第六章 總結與建議……………………………………158
6.1 總結………………………………………………158
6.2 建議………………………………………………161
參考文獻…………………………………………………162
1.Shortreed, R.M., Dourado, S., Kopelman R., “Development of a Fluorescent Optical Pottassium-Selective Ion Sensor with Ratiometric Response for Intracellular Applications,” Sensors and Actuators, B 38-39, pp. 8-12, 1997.
2.Malcik, N., Tunoglu, N., Caglar, P., Wnek, G.E., “Fiber-optic Cation Determination Using Crown Ether Dyes Immobilized on Polymer Membranes,” Sensors and Actuators, B53, pp. 205-210, 1998.
3.Zhujun, Z., Seitz, W.R., “A Fluorescent Sensor for Aluminum(III), Magnesium(II), Zinc(II), and Cadmium(II) Based on Electrostatically Immobilized Quinolin-8-Ol Sulfonate,” Analytica Chimica Acta, 171, pp. 251-258, 1985.
4.Malcik, N., Caglar, P., “The Operational Parameters of a New Fibre- optic Sensor for Ferric Ions in Aqueous Media,” Sensors and Actuators, B38-39, pp. 386-389, 1997.
5.Saari, A.L., Seltz, W.R., “Immobilized Morin as Fluorescence Sensor for Determination of Aluminum(III),” Analytical Chemistry, 55, pp. 667-670, 1983.
6.Lakowicz, J.R., Principles of Fluorescence Spectroscopy, Plenum Press, 1983.
7.Garcia, R.P., Moreno, F.A., Diaz, M.E., “Serum Analysis for Potassium Ions Using a Fibre Optic Sensor,” Clinica Chimica Acta, 207, pp. 31-40, 1992.
8.Narayanaswamy, R., Fortunato, S., “Flow Cell Studies with Immobilised Reagents for the Development of an Optical Fibre Sulphide Sensor,” Analyst, 111, pp.1085-1088, 1986.
9.Suzuki, K., Ohzora, H., Tohda, K., Miyazaki, K., “Fibre-optic Potassium Ion Sensors Based on a Neutral Ionophore and a Novel Lipophilic Anionic Dye,” Analytica Chimica Acta, 237, pp. 155-164, 1990.
10.Zhujin, Z., Mullin, J.L., Seitz, W.R., “Optical Sensor for Sodium based on Ion-pair Extraction and Fluorescence,” Analytica Chimica Acta, 184, pp. 251-258, 1986.
11.Al-amir, S.M.S., Ashworth, D.C., Narayanaswamy, R., “Synthesis and Characterization of Some Chromogenic Crown Ethers as Potential Optical Sensors for Potassium Ions,” Talanta, Vol. 36, No. 6, pp. 645-650, 1989.
12.Hecht, H.G., “A Comparison of the Kubelka-Munk, Rozenberg, and Pitts-Giovanelli Methods of Analysis of Diffuse Reflectance for Several Model Systems,” Applied Spectroscopy, 37, pp. 348-354, 1983.
13.Olinger, J.M., Griffiths, P.R., “Quantitative Effects of an Absorbing Matrix on Near-Infrared Diffuse Reflectance Spectra,” Analytical Chemistry, 60, pp. 2427-2435, 1988.
14.Udd, E., Fiber Optic Sensors, John Wiley and Sons, Inc, 1991.
15.Suzuki, K., Tohda, K., Yasushi, T., Ohzora, H., Nishihama, S., “Fiber-optic Magnesium and Calcium Ion Sensor Based on a Natural Carboxylic Polyether Antibiotic,” Analytical Chemistry, 61, pp. 382-384, 1989.
16.Ashworth, D.C., Huang, H.P., Narayanaswamy, R., “An Optical Calcium Ion Sensor,” Analytica Chimica Acta, 213, pp. 251-257, 1988.
17.Flausto, A.M., Rosario, P.G., Marta, E.D.G., Alfredo, S.M., “A Comparative Study of Two Diffurent Approaches for Active Optical Sensing of Potassium with a Chromoionophore,” Sensors and Actuators, B11, pp. 413-419, 1993.
18.Wolfbeis, O. S., Fiber Optic Chemical Sensors and Biosensors, Vol. II, pp. 1-19, 1991.
19.Motomizu, S., Yoshida, K., Toei, K., “Indirect Spectrophotometric Determination of Potassium Ion in water Based on the Precipitation with Tetraphenylborate Ion and a Crown Ether Using Flow Injection,” Analytica Chimica Acta, 261, pp. 225-231, 1992.
20.Schaffar, P.H., Wolfbeis, O.S., “Effect of Langmuir-Biodgett Layer Composition on the Response of Ion-selective Optrodes for Potassium, Based on the Fluorimetric Measurement of Membrane Potential,” Analyst, Vol. 113, pp. 693-697, 1988.
21.He, H., Li, H., Mohr, G., Kovacs, B., Werner, T., Wolfbeis, O.S., “Novel Type of Ion-selective Fluorosensor Based on the Inner Filter Effect: an Optrode for Potassium,” Analytical Chemistry, 65, pp. 123-127, 1993.
22.Wolfbeis, O.S., Schaffar, B.P.H., “Optical Sensors: an Ion-selective Optrode for Potassium,” Analytica Chimica Acta, 198, pp. 1-12, 1987.
23.Murkovic, I., Wolfbeis, O.S., “Fluorescence-based Sensor Membrane for Mercury(II) Detection,” Sensors and Actuators, B38-39, pp.246-251, 1997.
24.Narayanaswamy, R., Russell, D.A., Sevilla, F., “Optical-fibre Sensing of Fluoride Ions in a Flow-stream,” Talanta, Vol. 35, No. 2, pp. 83-88, 1988.
25.Vishnoi, G., Goel, T.C., Pillai, P.K.C., “Spectrophotometric Studies of Chemical Species Using Tapered Core Multimode Optical Fiber,” Sensors and Actuator, B45, pp. 43-48, 1997.
26.Wang, E., Zhu, L., Ma, L., Patel, H., “Optical Sensor for Sodium, Potassium and Ammonium Ions Based on Lipophilic Fluorescein Anionic Dye and Neutral Carriers,” Analytica Chimica Acta, Vol. 357, pp. 85-90, 1997.
27.Kim, K., Minamitani, H., Hisamoto, H., Suzuki, K., Kang, S., “Active Optical Thin-film Waveguide Sensor for Ion Sensing,” Analytica Chimica Acta, Vol. 343, pp. 199-208, 1997.
28.Covington, A., K., Ion-Selective Electrode Metholodology, Vol. I, pp.94-95, 1979.
29.Covington, A., K., Ion-Selective Electrode Metholodology, Vol. II, pp.77-78, 1979.
30.Senior, J., M., Optical Fiber Communications Principles and Practice, 1985.
31.易瑩, ”光纖感測器市場分析,” 光電資訊, 19期, pp. 53-57, 1993.
32.何敏夫, “臨床生化學,” 合計圖書出版社, 1992.
33.張連壁,”光纖感測器”, 文笙出版社, 1995.
34.李敏達, “均衡溶液化學,” 大聖圖書出版社, 1973.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊極東(2002):〈實踐大學學生學校生活適應之研究〉。《實踐學報》,33期,1-23。
2. 王儀旭、曾文鑫、周建智(2003):〈探討KP&KR回饋理論介入對投擲學習成效之影響─以手榴彈野戰投擲為例〉。《復興崗學報》,79期,185-204。
3. 曾光佩、張素凰(1998):〈大學生的憂鬱情緒與歸因─憂鬱性歸因理論的驗證〉。《中華心理學刊》,40卷,1期,33-53。
4. 孫敏華(1999):〈役男人格特質量表之編製及與軍中適應之研究〉。《中華輔導學報》,7期,97-132。
5. 孫敏華(1995):〈軍中生活壓力與身心健康之研究〉。《中華心理衛生學刊》,8卷,2期,59-74。
6. 黃春枝(1999):〈政大學生學校生活適應及其相關因素之研究〉。《訓育研究》,38卷。
7. 洪光遠(1998):〈新新人類部隊生活適應問題的探討〉。《軍事社會科學半年刊》,創刊號,131-151。
8. 吳櫻青(1998):〈學得的無助理論對諮商專業之啟示〉。《諮商與輔導》,153期,17-21。
9. 吳知賢(1998):〈習得無助的探討(下)〉。《國教之友》,50卷,2期,48-52。
10. 吳知賢(1998):〈習得無助的探討(上)〉。《國教之友》,50卷,1期,46-52。
11. 蕭君華(2001):〈家庭結構、生活適應與學業成就關係之研究〉。《萬能商學學報》,6期,159-178。
12. 潘正德(1996):〈大一新生人格特質、生活適應與學業成績的關係暨相關因素之研究〉。《中原學報》,24期,35-51。
13. 余景文、孫敏華(2002)〈軍校生人格特質、學習策略與學業成就的關係─以政治作戰學校九十一年班為例〉。《復興崗學報》,74期,113-134。
14. 朱美珍(1998):〈軍校學生人際關係與生活適應之研究─以政戰學校為例〉。《復興崗學報》,63期,149-165。
15. 王儀旭、曾文鑫、周建智(2003):〈軍事院校之軍校生基本體能研究─以引體向上項目為例〉。《復興崗學報》,78期,221-240。
 
系統版面圖檔 系統版面圖檔