# 臺灣博碩士論文加值系統

(3.87.250.158) 您好！臺灣時間：2022/01/25 19:09

:::

### 詳目顯示

:

• 被引用:0
• 點閱:426
• 評分:
• 下載:53
• 書目收藏:0
 本篇論文主要在研究秩序統計量(order statistic)之費雪訊息。對於任何參數之實數值函數之不偏估計量,其變異數,不論正規條件是否滿足,必存在一下界,亦即為訊息不等式(information inequality)。由此進而可評估此不偏估計量之好壞,當然對參數是為多維度時亦可成立。在此論文中,我們將說明為何統計量所包涵的訊息數越大,則由此統計量來估計未知參數,將可得較好之結果,同時本文主要討論,秩序統計量之訊息數,或訊息矩陣。此外由所得之訊息數或訊息矩陣來了解秩序統計量所包涵之訊息之大小,亦即當樣本數固定時,何處之秩序統計量相對的包涵較多之訊息數。
 The purpose of this research is to consider the Fisher information of order statistic. For any unbaised estimator T of real-value function there exists a lower bound for var(T), namely information inequality under regularity assumptions. Also, a similar lower bound exists when these regularity assumptions do not hold. Without loss of generality, we can extend this inequality to multiparameter case. In this paper, we discuss that why more accurately that real-value function of unknow parameter can be estimated when unbaised estimator has larger information. Mainly, we derive the Fisher information or information matrix of order statistics under the family of exponential distribution, for example I_{X_{i:n}},I_{(X_{r_{1}:n},X_{r_{1}+1:n},cdots,X_{r_{2}:n})} ... etc. Some of them, provide optimal informations.
 1 緒論.......................................22 訊息不等式及其含意.........................33 指數分配的基本性質和簡單的結果.............94 位置參數己知,尺度參數未知之費雪訊息數.....155 位置參數未知之訊息數......................386 結論......................................48附錄
 [1] Balakrishnan, N. and Basu, Asit P. (1995) , The Exponential Distribution:Theory, Methods and Applications, AW Amsterdam, Netherlands.[2] Chapman, D. G. and Robbins, H. (1951) , ”Minimum variance estimation without regularity assumptions.” Ann. Math. Statist. 22 ,581-586.[3] Cram´er, H. (1946a) , Mathematical Methods of statistics, Princeton University Press, Princeton.[4] Cram´er, H. (1946b) , ”A contribution to the theory of statistical estimation.”Skand. Akt. Tidskr. 29 ,85-94.[5] David, H. A. (1981) , Order statistics, Second edition, John Wiley & Sons, New York.[6] Darmois, G. (1945) , ”Sur les lois limites de la dispersion de certaines estimations.” Rev. Inst. Int. Statist. 13 ,9-15.[7] Edgeworth, F. Y. (1908,1909) ”On the probable errors of frequency constants.”J. R. Statist. Soc. 71 ,381-397,499-512,651-678; 72 , 81-90.[8] Fisher, R. A. (1922) , ”On the mathematical foundations of theoretical statistics.” Philos. Trans. R. Soc. London, Ser. A 222 ,309-368.[9] Fr´echet, M. (1943) , ”Sur l’extension de certaines evaluations statistiques de petits echantillons.” Rev. Int. Statist. 11 ,182-205.[10] Johnson, N. L. , Kotz, S. and Balakrishnan, N. (1994) , Continuous Univariate Distribution-Volume 1, Second edition, John Wiley & Sons, New York.[11] Johnson, N. L. , Kotz, S. and Balakrishnan, N. (1995) , Continuous Univariate Distribution-Volume 2, Second edition, John Wiley & Sons, New York.[12] Lehmann, E. L. (1983) , Theory of Point Estimation, John Wiley & Sons, New York.[13] Rao, C. R. (1945) , ”Information and accuracy attainable in the estimation of statistical parameters.” Bull. Calc. Math. Soc. 37 ,81-91.[14] Rao, C. R. (1947) , ”Minimum variance and the estimation of serveral parameters.” Proc. Camb. Phil. Soc. 43 ,280-283.[15] Rao, C. R. (1949) , ”Sufficient statistical and minimum variance estimates.”Proc. Camb. Phil. Soc. 45 ,213-218.[16] Robert V. Hogg and Allen T. Craig (1995) , Introduction To Mathematical Atatistics, Fifth edition, A Simon & Schuster Company, New Jersey.[17] Shao, J. (1999) , Mathematical Statistics, Springer , New York.[18] Savage, L. J. (1954,1972) , The foundations of statistics., Wiley, New York. Rev. ed.,Dover Pulications.[19] Savage, L. J. (1976) , ”On rereading R.A. Fisher (with discussion).”Ann. Statist. 4 ,441-500.[20] Sen, P. K. and Ghosh, B. K. (1976) , ”Comparison of some bounds in estimation theory.” Ann. Math. Statist. 4 ,755-765[21] Sukhatem, P. V. (1937) , ”Tests of signicance for sample of χ2-population with two degree of freedom.” Ann. of Euge. 8 ,52-56.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 統計方法應用於航空業顧客滿意度模式 2 大量資料計算基本統計量之一個簡單程序 3 運用統計方法與人工智慧技術建構整合性投資策略 4 以指標地質統計方法建構水文地質模式之研究 5 以不同統計模型分析基因型與環境交感效應之研究 6 應用統計與類神經網路模式於監督式分類問題 7 高維度統計資料分析與影像資料庫之搜尋技術 8 運用統計方法與微陣列技術探討放射線照射後之未同步化腦腫瘤細胞內基因表現 9 應用類神經網路於統計機率分配辨識之研究 10 統計模型參數和之估計 11 在區間資料下,參數模式之參數估計 12 一維薛丁格方程之特徵值問題數值計算 13 以統計方法與類神經網路模式預估工程直接成本之研究 14 用統計方法看兩千年總統大選選舉策略的效應 15 利用統計方法之基週期偵測器與國語連續語音聲調辨認

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室