(3.237.97.64) 您好!臺灣時間:2021/03/04 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥男
研究生(外文):Yen-Nan Chen
論文名稱:三段式流體化床生物程序處理壓克力纖維製程廢水之程序研究
論文名稱(外文):Study on Three-Stage Fluidized Bed Process Treating Acrylic Synthetic-Fiber Manufacturing Wastewater Containing High-Strength Nitrogenous Compounds
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:219
中文關鍵詞:微生物族群有機氮三段式流體化床程序聚丙烯腈人造纖維製程廢水
外文關鍵詞:three-stage fluidized bed processpolyacrylonitrile wastewaterorganic nitrogenmicrobial community
相關次數:
  • 被引用被引用:11
  • 點閱點閱:611
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
聚丙烯腈人造纖維亦稱為壓克力棉,主要用做紡織布用紗等用途,每年的生產量至少16萬公噸以上。聚丙烯腈人造纖維製程廢水(Polyacrylonitrile,PAN)中含有高濃度的碳氮化合物,TKN/COD比值高達0.15-0.26,總凱氏氮中有機氮佔64%以上,顯示此廢水不僅含高比例氮化物,且以有機氮化物為主。為有效去除廢水中的有機物與氮化物,本研究係以高溫厭氧脫氨/中溫無氧脫硝/中溫好氧硝化三段式流體化床組合程序處理PAN人造纖維製程廢水,期能藉由第一段高溫厭氧脫氨反應槽將廢水中難分解的有機氮轉化,並同時將長鏈的大分子化合物裂解成小分子的有機碳,使第二段脫硝槽中微生物能利用有機碳與迴流之硝酸鹽進行脫硝反應,第三段硝化槽再將第一段厭氧槽裂解形成的氨氮轉化為硝酸鹽,再返送回脫硝槽進行脫硝反應產生氮氣,而達到有效去除有機物與氮化物的目的。
本研究利用批次試驗的方式,分別嘗試以高溫厭氧、中溫脫硝與中溫硝化個別程序處理PAN廢水。於高溫厭氧環境下,以PAN廢水為基質進行生物分解反應時,所得到的反應動力曲線符合抑制型Haldane模式,顯示高濃度PAN廢水對於高溫厭氧菌群具抑制作用。另一方面,於中溫無氧環境下,以脫硝菌分解PAN廢水,脫硝菌群所能利用的碳源有限,若依產氣速率的快慢,將PAN廢水中的COD分為三類,分別為是脫硝菌易分解的部分、可分解的部分與不易分解的部分,在COD的比例上,分別為27%、19%與54%。最後,以硝化菌直接分解PAN廢水的實驗結果顯示,硝化菌所能利用的有機物僅佔30%,且無法有效裂解有機氮;同時實驗結果亦證實高濃度PAN廢水對於硝化菌具有明顯的抑制作用,其所殘留的有機物會抑制硝化作用的進行。
於研究期間發現PAN廢水含有高濃度的硫酸鹽,因此採用選擇不同的策略研究硫酸鹽於對於高溫厭氧微生物的影響,結果發現在預先去除廢水中的硫酸鹽後,再添加蔗糖做為輔助基質時,可以得到最佳的有機氮裂解效果。
三段式生物程序處理PAN廢水的操作上;第一個試程由於廢水成分的變動性大,生物分解功能不穩定。因此於第二個試程中添加蔗糖做為輔助基質,結果顯示可以明顯的提升處理效果。第三個試程中則嘗試以兩段式脫硝/硝化程序處理PAN廢水,但處理效果則有限。因此於第四個試程中串連三反應槽,高溫厭氧脫氨反應槽經強化培養後,已能有效裂解有機氮,降低對後續程序的影響,而能穩定的提升處理效果,最終出流水COD與有機氮濃度分別為175 mg/L與13 mg N/L。另一方面,由生物活性的結果也可發現,第四個試程中的活性亦較高。
最後以分子生物技術針對高溫厭氧反應槽中降解PAN廢水菌群進行探討。由變性明膠電泳的結果顯示,在不同的體積負荷下,微生物族群的多樣性有明顯的變化;此外,應用螢光原位雜交技術,並配合共軛焦顯微鏡的觀察,可以發現高溫厭氧脫氨反應槽中,以α-Proteobacteria與δ-Proteobacteria的族群為主,亦含有high G+C content與可以產生氫氣的Clostridium等微生物。
This research investigated the process performance of three-stage bioreactors treating PAN wastewater with high-strength nitrogenous compounds. By the water quality analysis of the PAN manufacturing wastewater, high concentration of organic nitrogen were found and the TKN/COD ratios were achieved 0.15-0.26 that indicated the complicated characteristics in biodegradation for the PAN wastewater. In order to enhanced biodegradation of nitrogenous compounds in PAN wastewater, a combined three-stage process of thermophilic anaerobic / anoxic denitrification / aerobic nitrification fluidized beds was employed. In the three-stage process, nitrogenous compounds were effectively degraded in thermophilic anaerobic fluidized bed, and organic carbon was removed in the denitrification fluidized bed. In the other way, nitrifiers could oxide the residual organic nitrogen and ammonia to nitrate completely in the final stage of aerobic nitrification fluidized bed.
In the beginning, a series of batch study in PAN wastewater degraded by three individual process, which were thermophilic anaerobic, anoxic denitrification, and aerobic nitrification process. The biodegradation study clearly showed that high concentration of PAN wastewater would inhibit the thermophilic anaerobes, and the biokinetic in PAN wastewater obeyed to Haldane inhibition model. On the other hand, denitrifers could utilized limited organic carbon in PAN wastewater for denitrification, and according to nitrogen production profiles, in the total COD of PAN wastewater, 27% were easily degraded, 19% were degradable, and 54% were hard to be degraded. For nitrification, the result of biokinetic study showed that high strength organic compounds would inhibit the bioactivity of nitrifiers.
In order to effectively convert organic nitrogen into ammonia in thermophilic anaerobic situation, the pre-removed strategy of sulfate and sucrose-adding would increase the activity of thermophilic anaerobes.
By the process control for treating PAN wastewater, the operation was not stable in the first period due to the variation of wastewater, including concentration and components of wastewater. In the second period, the operation performance got better in three stage process for adding sucrose as co-substrates. PAN wastewater was treated by only two stage process (anoxic denitrification / aerobic nitrification) in the third period, PAN wastewater could not be effectively degraded. In the fourth period, the three-stage process was operated again. Because the thermophilic anaerobe were enhanced in degrading nitrogenous compounds, the operation became stable and better in treating PAN wastewater. The concentration of effluent in three-stage process of COD and organic nitrogen were 175 mg/L and 13 mg/L, respectively. By the way, the bioactivity test showed the better activities for denitrifiers and nitrifiers in the fourth period.
Finally, the microbial biology technology was applied to the microbial population in the thermophilic anaerobic reactor. From the result of DGGE, the diversity of PAN-degrading bacteria would change in different volume loading. The bacteria communities in the thermophilic anaerobic fluidized bed were studied by fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy(CLSM). Alpha and delta-Proteobacteria dominated the bacteria population, and some high G+C content bacteria and Clostridium could be characterized in this system.
口試合格證書 I
中文摘要 II
英文摘要 IV
目錄 VI
表目錄 IX
圖目錄 XI
照片目錄 XV
第一章 前言 1
第二章 文獻回顧 5
2-1 PAN人造纖維製造流程 5
2-1-1 聚丙烯腈人造纖維種類及性質 5
2-1-2 聚丙烯腈人造纖維製造流程 6
2-2 氮的循環 10
2-2-1 自然界中氮的角色 10
2-2-2 固氮作用 10
2-2-3 氮的同化 12
2-2-4 氨化 12
2-2-5 硝化 12
2-2-6 厭氧氨氧化作用 13
2-2-7 硝酸鹽的還原 13
2-2-8 廢水處理中氮代謝機制的角色 16
2-3 脫硝作用 17
2-3-1 呼吸性脫硝 17
2-3-2 化學性脫硝 18
2-3-3好氧脫硝 18
2-3-4 影響脫硝的因素 20
2-4 硝化作用 25
2-4-1 自營性硝化作用 25
2-4-2異營性硝化作用 30
2-4-3影響硝化作用的參數 31
2-5 含氮污染物去除程序 36
2-5-1傳統生物厭氧硝化脫硝三段式組合程序 36
2-5-2 近十年新發展的生物脫硝硝化程序 40
2-6 厭氧作用 43
2-6-1 厭氧生物分解作用 43
2-6-2硫化氫的抑制作用 45
2-6-3 硫酸還原菌與甲烷生成菌之競爭關係 46
2-7 分子生物在生物程序中的應用 49
2-7-1 利用分子生物方法研究微生物 49
2-7-2 分子生物技術在生物處理程序上的應用 53
第三章 實驗設備與方法 56
3-1水質分析項目 56
3-1-1一般水質分析項目 56
3-1-2特殊水質分析 57
3-2生物活性與反應特性檢驗法 58
3-2-1批分式BOD瓶比攝氧速率實驗 58
3-2-2生化電解呼吸儀比攝氧速率實驗 59
3-2-3生化甲烷潛能試驗 61
3-2-4批分式血清瓶生化氮氣產能試驗 63
3-2-5氣泡式呼吸儀進行生化氮氣產能試驗 67
3-3三段式生物厭氧/脫硝/硝化流體化床 70
3-3-1高溫厭氧導流管式流體化床 70
3-3-2脫硝流體化床 71
3-3-3硝化導流管式流體化床 72
3-3-4三段式生物厭氧脫氨/無氧脫硝/好氧硝化組合程序 73
3-4固定生物膜生物質量之測定 74
3-5分子生物技術 76
3-5-1採樣 76
3-5-2 DNA萃取 76
3-5-3聚合酵素連鎖反應 78
3-5-4瓊脂膠體電泳 79
3-5-5微生物指紋譜之建立 80
3-5-6螢光原位雜交 81
3-6電子顯微鏡之生物菌相觀察 84
第四章 結果與討論 85
4-1聚丙烯腈人造纖維製程廢水水質特性分析 85
4-2聚丙烯腈廢水生物可分解性研究 87
4-2-1高溫厭氧系統處理聚丙烯腈廢水生物分解性研究 88
4-2-2無氧脫硝系統處理聚丙烯腈廢水生物分解性研究 93
4-2-3好氧硝化系統處理聚丙烯腈廢水生物分解性研究 98
4-3三段式流體化床連續流處理功能探討 101
4-3-1第一試程 廢水變異性對三段式處理功能之探討 104
4-3-2第二試程 外加蔗糖提升有機氮裂解率試程 116
4-3-3第三試程 兩段式組合程序處理聚丙烯腈廢水之可行性 128
4-3-4第四試程 三段式程序處理聚丙烯腈廢水 139
4-3-5各試程生物活性之探討 151
4-4高溫厭氧反應槽脫氨控制因子 163
4-4-1馴化後之高溫厭氧污泥處理聚丙烯腈廢水之生物分解性研究 163
4-4-2高溫厭氧污泥處理不含硫酸鹽之聚丙烯腈廢水之生物分解性研究 168
4-5高溫厭氧環境分解聚丙烯腈廢水微生物多樣性研究 172
4-5-1DNA萃取方法的比較 172
4-5-2高溫厭氧污泥族群複雜度分析 179
4-5-3應用螢光原位雜交技術評估高溫厭氧污泥族群分布狀況 182
4-6掃描式電子顯微鏡菌相觀察 186
第五章 結論與建議 196
5-1結論 196
5-2建議 198
參考文獻 199
吳哲宏,鄭幸雄,劉文佐,「厭氧生物共營集團分解對苯二甲酸,對甲基苯甲酸和苯甲酸」,國立成功大學環境工程研究所博士論文,(2001)。
林泓胤,鄭幸雄,「三段式流體化床生物程序處理高氮工業廢水之程序研究」,國立成功大學環境工程研究所碩士論文,(1999)。
周素圓,鄭幸雄,「硝化脫硝程序中生物活性評估技術之研究」,國立成功大學環境工程研究所碩士論文,(1997)。
邱金窗,鄭幸雄,「脫硝污泥對高濃度有機氮工業廢水之生物分解特性研究」,國立成功大學環境工程研究所碩士論文,(1996) 。
張耀泉,歐陽嶠暉,「A2/O法添加固定化硝化菌擔體併同去除碳、氮、磷之基礎研究」,國立中央大學環境工程研究所碩士論文,(1994)。
陳文欽,鄭幸雄,「固定生物流體化床處理高氮樹脂之特性研究」,國立成功大學環境工程研究所博士論文 (1997)
陳佳隆,曾怡禎,「南仁山古湖底泥銨氧化菌社會結構之研究」,國立成功大學生物學研究所碩士論文,(2000)。
陳秋陽,徐禮道,「生物活性碳流體化床處理樹脂製程廢水之研究」,第二十三屆廢水處理技術研討會論文集,高雄,第796~802頁,(1998)。
陳賢焜,鄭幸雄,「生物膜化脫硝程序處理高濃度氨氮廢水之研究」,國立成功大學環境工程研究所博士論文 (1994) 。
陳睿斌,歐陽嶠暉,「應用分子生物技術進行生物處理程序菌相分析之研究」,國立中央大學環境工程研究所碩士論文,(2001)。
劉雅蘭,歐陽嶠暉,「活性污泥法污泥活性評估之研究」,國立中央大學環境工程研究所碩士論文,(1994) 。
彭欽鑫,鄭幸雄,「三段式流體化床三相生物程序處理人造纖維製程廢水之生物分解性研究」,國立成功大學環境工程研究所碩士論文,(2001)。
鄭幸雄,卜訓中,蔡宗岳,俞文祥,「厭氧生化甲烷產能試驗標準方法之建立」,第十八屆廢水處理技術研討會論文集,第1-12頁,(1993) 。

鄭幸雄,吳美惠,「以生化動力理論控制硝化處理程序」,第十三屆廢水處理技術研討會論文集,第44-63頁,(1988) 。
鄭幸雄,吳坤龍,吳哲宏,「高溫厭氧菌分解含氮化合物在硫酸鹽豐富下的脫氮研究」,第二十六屆廢水處理技術研討會摘要集,高雄, (2002)。
鄭幸雄,姚俊宇,「比攝氧速率鑑定硝化菌活性之研究」,第十一屆廢水處理技術研討會論文集,第75-89頁,(1986) 。
鄭幸雄,陳文欽,「電解呼吸儀應用於石化廢水之生物分解特性研究」,第二十屆廢水處理技術研討會論文集,第1-63~1-70頁,(1995) 。
鄭幸雄,周素圓,蔡宗岳,「氣泡呼吸儀應用於石化廢水生物脫硝反應之特性研究」,第二十二屆廢水處理技術研討會論文集,第577~583頁,(1995) 。
鄭幸雄,羅文益,邱金窗,陳文欽,「生物脫硝程序處理高濃度有機氮石化製程廢水之研究」,第二十一屆廢水處理技術研討會論文集,台北,第169~175頁,(1996)。
鄭幸雄,鍾志宏,彭欽鑫,「固定化生物程序處理高氮工業廢水之探討」,第二十五屆廢水處理技術研討會論文集,雲林,第234~239頁,(2000)
鄭幸雄,彭欽鑫,林泓胤、「厭氧生物產氫在脫氨過程所扮演角色」,第二十五屆廢水處理技術研討會論文集,雲林,第393~398頁,(2000)
鄭幸雄,陳彥男,楊婉林,彭欽鑫,「批次試驗探討不同碳源之生物脫硝機制」,第二十五屆廢水處理技術研討會論文集,雲林,第228~233頁,(2000)
蔡宗岳,鄭幸雄,「兩段式生物脫硝及硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究」,國立成功大學環境工程研究所碩士論文,(1998)。
鍾志宏,鄭幸雄,「三段式生物組合程序處理ABS及PAN製程廢水之功能研究」,國立成功大學環境工程研究所碩士論文,(2000)
蘇忠楨,劉必揚,葉光勝,劉昌宇,「養豬廢水處理活性污泥中好氧性脫氮菌Ps. stutzeri SU2之分子生物學鑑定與環境樣本中脫氮菌株16S rDNA偵測」,第二十五屆廢水處理技術研討會論文集,雲林,(2001)。
蘇姿月,郭文健,「 以厭氧固定化細胞進行含硫酸鹽廢水前處理之研究」屏東科技大學環境工程與科學系研究所碩士論文,(2000) 。
Abeling U. and Seyfried C. F.(1992) Anaerobic-aerobic treatment of high-strength ammonium wastewater-Nitrogen removal via nitrite. Wat. Sci. Technol. 26, 1007-1015.

Akunna J. C., Bizeau C. and Moletta R. (1992) Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NOx ratio. Environ. Technol. 13, 825-836.

Akunna J. C., Bizeau C. and Moletta R.(1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Wat. Res. 27, 1303-1312.

Akunna J. C., Bizeau C. and Moletta R.(1994) Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations - ammonification, Denitrification and methanogenic activities. Environ. Technol. 15, 41-49.

Alleman J. E. (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Sci. Tech. 17, 409-419.

Allison S. M. and Prosser J. I. (1993) Ammonia oxidation at low pH by attached population of nitrifying bacteria. Soil Biol. Biochem. 25, 935-941.

Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R. and Stahl D. A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl. Environ. Microbiol. 56, 1919-1925.

Amann R. I., Ludwig W. and Schleifer K. -H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Appl. Environ. Microbiol. 59, 143-169.

Amann R. I., Stromley J., Devereux R., Key R. and Stahl D. A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58, 614-623.

Anderson I. C. and Levine J. S. (1986) Relative rates of nitric oxide production by nitrifiers, denitrifiers and nitrate resporers. Appl. Environ. Microbiol. 51, 938-945.


Anderson I. C., Poth M., Homstead J. and Burdige D. (1993) A comparison of NO and N2O production by autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 59, 3525-3533.

Anthonisen A. C., Loehr R. C., Prakasam T. B. S. and Srinath E. G. (1976)Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed. 48, 835-852.

ASCE, (1992) Design of Municipal Wastewater Treatment Plant. Vol I, WEF Manual of Practice No.8, American Society of Civil Engineering.

Beaubien A., Hu Y., Bellahcen D., Urbain V. and Chang J. (1995) Monitoring metabolic activity of denitrification process using gas prodution measurements. Wat. Res. 29, 2269-2274.

Beecari M., Passino R., Ramadori R. and Tandoi V. (1983) Kinetic of dissimilatory nitrate and nitrite reduction in suspended growth culture. J.WPCF. 55, 58-64.

Belser L. W. (1979) Population ecology of nitrifying bacteria. Annu. Rev. Microbiol. 33, 309-333.

Bock E. and Koops H. -P. (1992) The genus Nitrobacter and related genera. In The Procaryotes, 2nd. edn, (Balows A., Trüper H. G., Dworkin M., Harder W. and Schleifer K. -H. eds), 2302-2309, springer- Verlag, Berlin.

Bock E., Schmidt I., Stuven R. and Zart D. (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptors. Arch Microbiol. 163, 16-20.

Bodelier P. L. E., Libochant J. A., Blom C. W. P. M. and Laanbroek H. J. (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl. Environ. Microbiol. 62, 4100-4107.

Bonin P. and Gilewicz M. (1991) A direct demonstration of "co-respiration" of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components. FEMS Microbiol. Lett.80, 183-188.

Boon N., Windt W. D., Verstraete W. and Top E. M. (2002)Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS. Microbiol. Ecol. 39, 101-112.

Borneman J. and Triplett E. W. (1997) Molecular microbial diversity of an agriculture soil in Wisconsin. Appl. Environ. Microbiol. 62, 1935-1943.

Brezonik P. L.(1977) Denitrification in nature waters.Progress Water Technology. 8, 373-392.

Broda E.(1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol. 17, 491-493.

Carter J. P., Hsiao Y. H., Spiro S. and Richardson D. J.(1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microbiol. 61, 2852-2858.

Cervantes F., Monroy O. and Gómez J. (1998) Accumulation of intermediates in a denitrifying process at a different copper and high nitrate concentrations. Biotechnol. Lett. 20, 959-961.

Charles G. (1999) Denitrification of high-nitrate, high-salinity wastewater. Wat. Res. 33, 223-229.

Christensen M. H. and Harremoes P. (1977) Biological denitrification of sewage: a literature review. Prog. Water Technol. 8, 509-555.

Cho J.- C. and Teidje J. M. (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66, 5448-5456.

Copper G. S. and Smith R. L. (1983) Sequence of products formed during denitrification in some diverse western soils. Soil Sci. Soc. Amer. Proc. 27, 659-664.

de Boer W., Duyts H. and Laanbroek H. J. (1989)Urea stimulated autotrophic nitrification in suspensions of fertilised, acid heath soil. Soil Biol. Biochem. 21, 349-354.


de Boer W., Tietema A., Klein Gunnewiek P. J. A. and Laanbroek H. J. (1992) The qutotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biol. Biochem. 24, 229-234.

Delwiche C. C. (1970) The nitrogen cycle. Scientific American. 223, 137-149.

Ehrich S., Behrens D., Lebedeva E., Ludwig W. and Bock E. (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. Nov. and its phylogenetic relationship. Arch. Microbiol. 164, 16-23.

Erhart R., Bradford D., Seviour R. J., Amann R. and Blackall L. L. (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of "Microthrix parvicella" in activated sludge. Syst. Appl. Microbiol. 20, 310-318.

Etchebehere C., Errazquin I., Barrandeguy E., Dabert P., Moletta R. and Muxí L. (2001) Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol Ecol. 35,259-265.

Fdz-Polanco F., Garcia P. A. and Villaverde S. (1994) Temperature effect over nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Wat. Sci. Tech. 30, 121-130.

Felske A., Engelen B., Nübel U. and Backhaus H.(1996) Direct ribosomal isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62, 4162-4167.

Ferris M. J., Muyzer G. and Ward D. W.(1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62, 340-346.

Fick M. (1997) Influence of c-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater. Wat. Res. 31, 583-589.

Fisher S. G. and Lerman L. S.(1979) Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell. 16, 191-200.


Freitag A., Rudert M. and Bock E.(1987) Growth of Nitrobacter by dissimilatory nitrate reduction. FEMS Microbiol. Lett. 48,105-109.

Geraats S. G. M., Hooijmans C.M., van Niel E. W. J., Robertson L. A., Heijnen J. J., Luyben K. C. A. M. and Kuenen J. G. (1990) The use of a metabolically structured model in the study of growth, nitrification and denitrification by Thiosphaera pantotropha. Biotech. Bioeng. 36, 921-930.

Ghyoot W., Vandaele S. and Verstraete W. (1999) Nitrogen removal from sludge reject water with a membrane-assisted bioreactor. Wat. Res. 33, 23-32.

Glass C. and Silverstein J. (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res. 32, 831-839.

Goreau T. J., Kaplan W. A., Wofsy S. C., McElroy M. B., Valois F. W. and Watson S. W. (1980) Production of NO and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526-532.

Guerrero M. G., Vega J. M. and Losada M. (1981) The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant. Pysiol. 32, 169-204.

Gujer W. and Zehnder A. J. B. (1983) Conversion processes in anaerobic digestion. Wat. Sci. Tech. 15, 127-167.

Gumaelius L.(1996) Potential biomarker for denitrification of wastewater: effect of process variables and cadmium toxicity. Wat. Res.30, 3025-3031.

Gupta A. B. and Gupta S. K.(2001) Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Wat. Res. 35, 1714-1722.

Hadry H., Balick M. and Schierwater B. (1992) Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1, 55-63.

Hanaki K., Zheng H. and Matsuo T. (1992) Production of nitrous oxide gas during denitrification of wastewater. Wat. Sci. Tech. 26, 1027-1036.


Hao X., Heijnen J. J. and van Loosdrecht M. C. M. (2002) Sensitivity analysis of a biofilm model describing a one-stage complete autotrophic nitrogen removal (CANON) process. Biotechnol. Bioeng. 77, 266-277.

Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J. and Saunders J. R. (1993) The phylogeny of the autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139, 1147-1153.

Head I. M., Saunders J. R. and Pickup R. W.(1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 1-21.

Hellinga C., Schellen A. A. J. C., Mulder J. W., van Loosdrecht M. C. M. and Heijnen J. J. (1998) The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Wat. Sci. Tech. 37,135-142.

Helmer C. and Kunst S. (1998) Simultaneous nitrification and denitrification in an aerobic biofilm system. Wat. Sci. Tech. 37, 183-187

Helmer C., Kunst S., Juretschko S., Schmid M. C., Schleifer K.-H. and Wagner M. (1999) Nitrogen loss in a nitrifying biofilm system. Wat. Sci. Tech. 39, 13-21.

Hong Z., Hanaki K. and Matsuo T. (1994) Greenhouse gas - N2O production during denitrification in wastewater treatment. Wat. Sci. Tech.28, 203-207.

Hooijmans C. M., Geraats S. G. M., van Niel E. W. J., Robertson L. A., Heijnen J. J. and Luyben K. C. A. (1990) Determination of growth and coupled nitrification /denitrification by immobilized Thiosphaera pantotropha using measurement and modeling of oxygen profiles. Biotech. Bioeng. 36, 931-939.

Hovanec T. A. and DeLong E. F. (1996)Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62, 2888-2896.

Huang H. K. and Tseng S. K.(2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl. Microbiol. Biotechnol. 55, 90-94.


Hyman M. R., Murton I. B. and Arp D. J. (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54, 3187-3190.

Ilies P. and Mavinic D. S. (2001) The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate. Wat. Res. 35, 2065-2072.

Isa Z., Grusenmeyer S. and Verstraete W. (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological aspects. Appl. Environ. Microbiol. 51, 580-587.

Itokawa H., Hanaki K. and Matsuo T. (2001) Nitrous oxide production in high - loading biological nitrogen removal process under low COD/N ratio condition.Wat. Res.35, 657-664.

Jaap R. (1998) Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. Strain JR12. Appl. Environ. Microbiol. 64.

Jeill O. H. (1999) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.

Jetten M. S. M., Horn S. and van Loosdrecht M. C. M.(1997) Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech. 35, 171-180.

Jetten M. S., Stams A. J. M. and Zehnder A. J. B. (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88, 181-198.

Jetten M. S., Wagner M., Fuerst J., van Loosdrecht M. C., Kuenen J. G. and Strous M. (2001) Microbiology and application of the anaerobic ammonium oxidation(anammox) process.Current Opinion in Biotechnology.12, 283-288.

Jones R. D. and Morita R. Y.(1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45,401-410.


Juretschko S., Timmermann G., Schmid M., Schleifer K. -H., Pommerening-Röser A., Koops H. -P. and Wagner M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrosopira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3042-3051.

Kent A. D. and Triplett E. W.(2002) Microbial community and their interactions in soil and rhizophere ecosystems. Annu. Rev. Microbiol. 56, 211-236.

Klemedtsson L., Jiang Q., Klemedtsson Ả. K. and Bakken L. (1999) Autotrophic ammonium-oxidising bacteria in a Swedish mor humus. Soil Biol. Biochem. 31, 839-847.

Koops H. -P., Böttcher B., Möller U. C., Pommerening-Röser A. and Stehr G. (1990) Description of a new species of Nitrosococcus. Arch. Microbiol. 154, 244-248.

Kornaros M., Zafiri C. and Lyberatos G. (1996) Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Wat. Environ. Res. 68, 934-945.

Kowalchuk G. A. and Stephen J. R. (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485-529.

Küsel k., Dorsch T., Acker G., Stackebrandt E. and Drake H. L. (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int. J. Syst. Environ. Microbiol. 50, 537-546.

Lang E. and Jagnow G. (1986) Fungi of a forest soil nitrifying at low pH values. FEMS Microbiol. Ecol. 38, 257-265.

Lee Y. W., Ong S. K. and Sato C. (1997) Effects of heavy metals on nitrifying bacteria. Wat. Sci. Tech. 36, 69-74.

Lee R. W., Robinson J. J. and Cavanaugh C. M. (1999) Pathway of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. The Journal of Experimental Biology. 202, 289-300.

Lipschultz W., Zafiriou O. C., Wofsy S. C., McElroy M. B., Valois F. W. and Watson S. W. (1981) Production of NO and NO by soil nitrifying bacteria. Nature. 294, 641-643.

Liu W. T., Marsh T. L. and Forney L. J.(1997) Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Wat. Sci. Tech. 37, 417-422.

Lozinov A. B. and Ermachenko V. A. (1959) NH4+ oxidation by nitrite bacteria as a function of certain factors of the medium. I. The effect of (NH4)2SO4 concentration. Microbiology. 28, 674-679.

Mackie R. I. and Bryant M. P. (1981) Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60℃. Appl. Environ. Microbiol. 41, 1363-1373.

Mahne I. and Tiedje J. M. (1995) Criteria and methodology for identifying respiratory denitrifiers. Appl. Environ. Microbiol. 61, 1110-1115.

Manz W., Amann R., Ludwig W., Wagner M. and Schleifer K. -H. (1992) Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593-600.

Manz W., Potthoff-Wendt K., Neu T. R., Szewzyk U. and Lawrence J. R. (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb. Ecol. 37, 225-237.

Matson J. V. and Characklis W. G. (1976) Diffusion into microbial aggregates. Wat. Res. 10, 877-885.

McCarty G. W. and Bremner J. M.(1992) Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonia. Proc. Natl. Acad. Sci. 89, 453-456.

McCartney D. M. and Oleszkiewicz J. A. (1993)Competition between methanogens and sulfate reducers: effect of COD: sulfate ratio and acclimation. Wat. Environ. Res. 65, 655-664.
Mobarry B. K., Wagner M., Urbain V., Rittmann B. E. and Stahl D. A. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62, 2156-2162.

Moré M., Herrick J. B., Silva M. O., Ghiorse W. C. and Madsen E. J.(1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60, 1572.

Moreno-Vivián C., Cabello P., Martínez-Luque M., Blasco R. and Castillo F. (1999) Prokaryote nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacterial. 21, 6573-6584.

Mulder A., van de Graaf A. A., Robertson L. A. and Kuenen J. G. (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor . FEMS Microbiol. Ecol. 16, 177-183.

Munch E. V., Lant P. and Keller J.(1996) Simultaneous nitrification and denitrificaion in bench-scale sequencing batch reactors. Wat. Res. 30,277-284.

Murray A. E., Hollibaugh J. T. and Orrego C. (1996) Phylogenetic composition of bacterio plankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol. 62, 2676-2680.

Muyzer G., de Waal E. C. and Uitterlinden A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.

Muyzer G. and Smalla K. (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Ant. van Leeu. 73, 127-141.

Myers R. M., Fisher S. G., Lerman L. S. and Maniatis T. (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleis Acids Res.13, 3131-3145.


Nakajima M., Hayamizu T. and Nishimura H. (1984) Inhibitory effect of oxygen on denitrification and denitrification in sludge from an oxidation ditch. Wat. Res. 18, 339-343.

OH J. and Silverstein J. (1996) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.

Okabe S.(1996) Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Wat. Res. 30, 1563-1572.

Okabe S., Santegoeds C. M., Watanabe Y. and de Beer D. (2002) Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Biotechnol. Bioeng. 78, 119-130.

Otte S., Schali J., Kuenen J. G. and Jetten M. S. (1999)Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Appl. Microbiol. Biotechnol.51, 255-261.

Painter H. A. and Loveless J. E. (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process.Wat. Res. 17, 237-248.

Patureau D., Davison J., Bernet N. and Moletta R. (1994) Denitrification under various aeration conditions in Comamonas sp., strain Sgly2. FEMS Microbiol. Ecol. 14, 71-78.

Payne W. J. (1981)Denitrification, Chap. 2~3, John Wiley & Sons, New York.

Pennington P. L. and Ellis R. C. (1993) Autotrophic and heterophic nitrification in acidic forest and native grassland soils.Soil Biol. Biochem.25, 1399-1408.

Pommerening-Röser A., Rath G. and Koops H. -P.(1996) Phylodenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344-351.

Poth M. and Focht D. D.(1985) N-15 kinetic analysis of N2O production by Nitrosomonas europaea - an examination of nitrifire denitrification. Appl. Environ. Microbiol. 49, 1134-1141.

Quevedo M., Guynot E. and Muxí L. (1996)Denitrifying potential of methanogenic sludge. Biotechnol Lett. 18, 1363-1368.

Randall C. W. (1984) Nitrite built-up in activated sludge resulting from temperature effects. J. WPCF. 56, 1039-1044.

Ranjard L., Brothier E. and Nazaret S. (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl. Environ. Microbiol. 66, 5334-5339.

Percheron G., Bernet N. and Moletta R. (1997) Start-up of anaerobic digestion of sulfate wastewater. Bioresource Technology. 61, 21-27.

Rick W. Y. and Stuart M. T. (2001)Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology. 4, 307-312.

Riesner D., Steger G., Zimmat R., Owens R. A., Wagenhofer M., Hillen W., Vollbach S. and Henco K. (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis. 10, 377-389.

Rijn J. V., Tal Y. and Barak Y.(1996) Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzri strain isolated from a denitrifying fluidized bed reactor. Appl. Environ. Microbiol. 62, 2615-2620.

Rintala J. and Lettinga G. (1992) Effects of temperature elevation form 37 to 55℃ on anaerobic treatment of sulfate rich acidified wastewaters. Environ. Technol. 13, 801-812.

Robertson L. A., Dalsgard T., Revsbech N. P. and Kuenen J. G. (1995)onfirmation of aerobic denitrification in bacth cultures, using gas chromatograhpy and 15N mass spectrometry. FEMS Microbiol Ecol. 18, 113-120.

Robertson L. A., van Niel E. W. J., Torremans R. A. M. and Kuenen J. G.(1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 54, 2812-2818.

Roller C., Wagner M., Amann R., Ludwig W. and Schleifer K.- H. (1994) In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology. 140, 2849-2858.

Rosenbaum V. and Riesner D. (1987) Temperature-gradient gel electrophoresis: thermodynamic analysis of nucleic acids and proteins in purified form and in cellur extracts. Biophys. Chem. 26, 235-246.

Rosselló-Mora R. A., Wagner M., Amann R. and Schleifer K. -H. (1995) The abundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61,702-707.
Saiki R. K., Gelfand D. H., Stoffel S. J., Higuchi R., Horn G. T., Mullis K. B. and Erlich H. A. (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science. 239, 487-491.

Sánchez M., Mosquera-Corral A., Méndez R. and Lema J. M. (2000) Simple methods for the determination of the denitrifying activity of sludges.Biores. Technol. 75, 1-6.

Schalk J., de Vries S., Kuenen J. G. and Jetten M. S. (2000)Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry. 39, 5405-5412.

Scheffield V. C., Beck J. S., Stone E. M. and Myers R. M. A. (1992) Simple and efficient method for attachment of a 40-base pair, GC-rich sequence to PCR amplified DNA. BioTechnique. 12, 386-387.

Schramm A., de Beer D., Wagner M. and Amann R. (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64, 3480-3485.

Scholten J. C. M.and Stams A. J. M. (1995) The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeu. 68, 309-315.

Schönheit, P., Kristjansson J. K. and R. K. Thauer. (1982) Kinetic mechanism for the ability of sulfate reducers to out-compete methanogen for acetate. Arch. Microbiol. 132, 285-288.


Schramm A. and Amann R. (1999)Nujcleic acid-based techniques for analyzing the diversity, structure and dynamics of microbial communities in wastewater treatment. In Environmental processes I.edited by Winter J., 85-108. Wiely-VCH, Weinheim.

Schmalenberger A., Schwieger F. and Tebbe C. C. (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbail community analyses and genetic profiling. Appl. Environ. Microbiol. 67, 3557-3563.

Schmidt I. and Bock E. (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 167,106-111.

Schulthess R. V., Wild D. and Gujer W.(1994) Nitric and nitrous oxide from denitrifying activated sludge at low oxygen concentration. Wat. Sci. Tech. 30, 123-132

Schwieger F. and Tebbe C. C.(1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64, 4807-4876.

Sharma B. and Ahlert R. C. (1977) Nitrification and nitrogen removal. Wat. Res. 11, 897-925.

Smith P. G. and Coackley P. (1984) Diffusity, tortuosity and pore structure of activated sludge. Wat. Res. 18, 117-122.

Sorokin D. Y., Muyzer G., Brinkhoff T., Kuenen G. and Jetten M. S. M. (1998) Isolation and characterisation of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov.. Arch. Microbiol. 170, 345

Stams A. J. M., Flameling E. M. and Marnette E. C. L.(1990) The importantance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbiol. Ecol. 74, 337-344.

Stahl D. A., Lane D. J., Olsen G. J.and Pace N. R.(1985) Characterization of a Yellowstone hot spring microbial community by 5S ribosomal RNA sequences.Appl. Environ. Microbiol. 49, 1379

Stephen J. R., McCaig A. E., Smith Z., Prosser J. I. and Embely T. M.(1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62, 4147-4154.

Stewart V. (1994) Regulation of nitrate and nitrite reductase synthesis in Enterobacteria. Ant. Van Leeu. 66, 37-45.

Stoutharmer A. H.(1988) Dissimilatory reduction of oxidized nitrogen compounds. In Biology of Anaerobic Microorganisms. ed. Zehnder A. J. B. John Wiely and Sons. New York, NY.

Strous M., Fuerst J. A., Kramer E. H., Logemann S., Muyzer G., van de Pas-Schoonen K. T., Webb R., Kuenen J. G. and Jetten M. S. (1999) Missing lithotroph identified as new planctomycete. Nature. 400, 446-449.

Strous M., Van G. E., Zheng P., Kuenen J. G. and Jetten M. S. (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations.Wat. Res.31, 1955-1962.

Stüven R. and Bock E. (2001) Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater. Wat. Res.35, 1905-1914.

Suwa Y., Imamura Y., Suzuki T., Tashiro T. and Urushigawa Y. (1994) Ammonium-oxidizing bacteria with different sensitivies to (NH4)2SO4 in activated sludge. Wat. Res. 28, 1523-1532.

Suzuki I., Dular U. and Kwok S. C. (1974) Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts.J. Bacteriol. 176, 6623-6630.

Tatton M. J., Archer D. B., Powell G. E. and Parker M. L. (1989) Methanogenesis from ethanol by defined mixed continuous cultures. Appl. Environ. Microbial. 55, 440-445.

Terry K. R. and Hooper A. B.(1981) Hydroxylamine oxidoreductase: a 20-heme, 200,000 molecular weight cytochrome c with unusual denaturation properties which forms a 63,000 molecular weight monomer after heme removal. Biochemistry. 20, 7026-7032.


Teske A., Regan J. M., Toze S., Rittmann B. E. and Stahl D. (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176, 6623-6630.

Tiedje J. M. (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms. Edited by Zehnder A. J. B., 179-244, Wiely. New York.

Timmermans P. and van Haute A. (1983) Denitrification with methanol : fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Wat. Res. 17, 1249-1255.

Turk O. and Mavinic D. S. (1989) Maintaining nitrite build-up in a system acclimated to free ammonia. Wat. Res. 23, 1383-1388.

vam Cleemput O. and Baert L. (1984) Nitrite: a key compound in N loss processes under acid conditions? Plant and Soil. 76, 233-241.

van de Graaf A. A., de Bruijn P., Robertson L. A., Jetten M. S. M. and Kuenen J. G. (1996) Autotrophic growth of anaerobic ammonium-oxidising microorganisms in a fluidised bed reactor. Microbiology. 142, 2187-2196.

van de Graff A. A., Mulder A., de Bruijn P., Jetten M. S., Robertson L. A. and Kuenen J. G.(1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246-1251.

van der Hoek J. P., Latour P. J. M. and Klapwijk A. (1988) Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrification reactor fed with methanol. Appl. Microbiol. Biotechnol. 28, 493-499.

Vanneli T., Logan M., Arciero M. and Hooper A. B. (1990)Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea.Appl. Environ. Microbiol. 56,1169-1171.

Visser A., Alphenaar P. A., Gao Y., van Rossem G. and Lettinga G. (1993a) Granulation and immobilization of methanogenic and sulfate reducing bacteria in high rate anaerobic reactor. Appl. Microbiol. Biotech. 40, 549-556.

Visser A., Gao Y., Y. and Lettinga G. (1992) Anaerobic treatment of synthetic sulfate-containing wastewater under thermophilic conditions. Wat. Sci. Tech. 25, 193-202.

Visser A., Gao Y. and Lettinga G. (1993b) Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulfate containing synthetic wastewater. Wat. Res. 27, 541-550.

Visser V. A., Gao Y. and Lettinga G. (1993c) Effect of pH on methanogenesis and sulfate reduction in thermophilic (55℃) UASB reactors. Bioresource Technology. 49, 105-119.

Wagner M., Amann R., Kämpfer P., Assmus B., Hartmann A., Hutzler P., Springer N. and Schliefer K. -H. (1994) Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 17, 405-417.

Wagner M., Rath G., Amann R., Koops H. -P. and Schleifer K.-H. (1995) In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18, 251-264.

Ward B. B. (1996) Nitrification and denitrification: probing the nitrogen cycle in aquatic environment. Microb. Ecol. 32,247-261.

Watson S. W. and Waterbury J. B.(1971) Characteristics of two marine nitrite-oxidizing bacteria Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp.. Arch. Microbiol. 77, 203-230.

Watson S. W., Bock E., Harms H., Koops H.-P. and Hooper A. B. (1989) Nitrifying bacteria. In Bergey’s manual of systematic bacteriology. (edn) Staley J. T., Bryant M. P., Pfennig N. and Holt J. G. 3, 1808-1834. The Williams and Wilkins Co., Baltimore, Md.

Widdel F. (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. Nov., D. latus sp. Nov., and D. curcatus sp. Nov. Arch. Microbiol. 148, 286-291.

Widdel F. (1992a) The genus Desulfotomaculum. In The Prokaryotes, 2nd edn.(Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H., Eds.), 1792-1799. Springer-Veriag, New York, NY.
Widdel F. and Hansen T. A. The dissimiliatory sulfate- and sulfur-reducing bacteria. (1992b) In The Prokaryotes, 2nd ed.( Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H., Eds.), 583-624, Springer-Veriag, New York, NY.

Wilderer P. A., Bungartz H.-J., Lemmer H., Wagner M., Keller J. and Wuertz S.(2002) Modern scientific methods and their potential in wastewater science and technology. Wat. Res.36, 370-393.

Wilson T. E. and Newton D. (1973) Brewery waste as a carbon source for denitrification. 28th Annual prudue industrial waste conference, 234-241.

Woese C. R. (1987) Bacterial evolution. Microbiol. Rev. 51,221-271.

Woese C. R., Kandler O. and Wheelis M. L.(1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA87, 4576-4579.

Wood P. M. (1986)Nitrification as a bacterial energy source. In Nitrification. 39-62. edited by J. I. prosser. Washington, DC: IRL Press.

Wrage N., Velthof G. L., van Beusichem M. L. and Oenema O. (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Bio. Biochem. 33, 1723-1732.

Yang Y. H., Yao J., Hu S. and Qi Y. (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol. 39, 72-79.

Ye R. W., Averill B. A. and Tiedje J. M.(1994) Denitrification: production and consumption of nitric oxide. Appl. Environ. Microbiol. 60, 1053-1058

Zart D. and Bock E. (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol. 169, 282-286.

Zumft W. G. (1992) The denitrifying prokaryotes.In The Procaryotes, 2nd.edn, (Balows A., Trüper H. G., Dworkin M., Harder W. and Schleifer K. -H. eds), 554-582, springer- Verlag, Berlin.

Zumft W. G. (1997)Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533-616.

Zumft W. G., and Ca´rdenas J. (1979) The inorganic biochemistry of nitrogen.
Bioenergetic processes. 66, 81–88.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔