跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張得桂
研究生(外文):Der-Quei Chang
論文名稱:核災緊急應變與風險管理之決策支援系統
論文名稱(外文):Decision Support System for Emergency Response and Risk Management of Nuclear Power Plants
指導教授:張乃斌張乃斌引用關係
指導教授(外文):Ni-Bin Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:178
中文關鍵詞:核電廠決策支援系統核災緊急應變劑量評估
外文關鍵詞:MM5Nuclear AccidentDecision Support SystemGISGPSRSDSSPCTRANRisk
相關次數:
  • 被引用被引用:9
  • 點閱點閱:2117
  • 評分評分:
  • 下載下載:681
  • 收藏至我的研究室書目清單書目收藏:8
人類在歷經蘇俄車諾比爾、日本文殊、及美國三哩島核電廠事件之影響後,世界各主要工業國均投入核災風險評估及決策支援方面之研究。目前台灣島上的人口密度已居世界之冠,且有三座核能電廠在運轉,尤其最近國內首次發生台灣核能發電史上最嚴重事件,核三廠3A級廠區緊急事故,此事故更是引發社會大眾極度的關切。本研究為考量核一、二、三廠附近複雜地形效應,建立了一套大氣擴散及劑量評估決策支援系統,配合運用最新之資訊科技,依不同緊急應變情況,整合所需之資料庫,進行大氣擴散及劑量評估展示,提供多層次之即時決策支援與風險分析。而本系統之主要目的:模擬評估核電廠緊急事故對周圍民眾的影響,並透過GIS來協助決策者立即應變適當的民眾輻射防護行動。主要包含四套子系統:廠周界劑量評估子系統、局部性劑量診斷子系統、區域性劑量預報子系統、及緊急應變查詢子系統。此套系統能在個人電腦為操作平台進行作業,整合各種射源情境 (如PCTRAN® ),診斷模式(NCKU-WINDF)與預報風場(MM5),所以模式庫可運用綜觀天氣及局部環流分析之知識,進行不同尺度之大氣擴散模擬(LPM)以及劑量評估。此系統以地理資訊系統中之2D 及3D遙測影像作廠周界、局部性、及區域性污染擴散之展示。最後,查詢系統則提供緊急災區應變之相關資訊,可查詢各類氣象、地形、核物質、應變組織、及救災行動相關資料,配合各種事故發生之情境與模擬展示之結果,以提供決策者研判鄰近地區民眾暴露劑量,並擬定各種可能降低災區居民風險之應變行動。
Lessons learned from Three Mile Island (TMI) accident in the U.S., Mihama SG tube rupture in Japan, and Chernobyl disaster in Russia have resulted in a long-term debate of the operational safety of nuclear power supply. Many industrialized countries have thus initialized a continue effort to develop various types of emergency response systems for the nuclear power plants. Since the population density of Taiwan is so high as on the top in the world, three existing nuclear power plants, located at the coastal areas of Northern and Southern Taiwan, have received wide attention in the public. They have also caused serious concerns of accidental release of radioactive nuclides to the atmosphere that could generate unexpected impacts to neighboring metropolitan regions via the interactions with the complex terrain. Such potential impact demonstrates a need of effective and immediate mitigation measures and control actions through a well-coordinated decision support system (DSS) for risk management and communication. With the aid of latest advanced information technologies, both long-term and short-term multi-scale predictions of the potential impacts from accidental release of various nuclides can be acquired easily for fulfilling the basic functions of real-time emergency preparedness and response as well as risk communication and control. This geographical information system (GIS)-based DSS, Emergency Response and Decision Making System (ERDMS), is basically comprised of four subsystems responsible for forecasting and assessing the events via on-site scale, local scale, regional scale, and essential data queries. The simulation process starts from the beginning when the PCTRAN® and other source-term models have been fully incorporated into ERDMS. Based on the knowledge of prognostic and diagnostic meteorological forecasting analysis, the model base uses two-dimensional and three-dimensional puff dispersion techniques associated with dose, health effects, and demographic models so that accident consequences in local population centers can be determined individually. This DSS owns the capability of 2D and 3D animation of the pollutant transport and transformation that must be performed based on the integration of remote sensing (RS) and digital terrain modeling (DTM) data, as well as the global positioning system (GPS) for the location identification. Finally, the database in the GIS may even support more essential queries through various spatial analyses to deploy available rescue resources in a regional sense. With these estimates and observations, the decision makers can specify operating procedures that minimize the detrimental effects and permit protective response in the accidental event with confidence.
Chinese Abstract i
English Abstract ii
Acknowledgements iv
Contents v
Tables viii
Figures ix
Chapter 1 Introduction 1-1
1.1 Backgrounds 1-1
1.2 Study Goals 1-3
Chapter 2 Literature Review 2-1
2.1 Decision Support System 2-1
2.2 Source Term Model 2-4
2.3 Meteorological Processors 2-5
2.4 Dispersion Model 2-7
2.5 Dry and Wet Deposition 2-8
Chapter 3 Modeling Analysis 3-1
3.1 Nuclear Reactor Simulator: PCTRANâ Model 3-1
3.2 Diagnostic Wind Field Model: NCKU-WINDF Model 3-4
3.3 Prognostic Wind Field Model: MM5 3-6
3.4 Pollutant Dispersion Model: Lagrangian Puff Model 3-8
3.5 Dry and Wet Deposition Model 3-12
Chapter 4 Database Analysis 4-1
4.1 Analysis of Geographic Data 4-2
4.1.1 Base Maps 4-3
4.1.2 Analysis of Vector and Raster Base Maps 4-4
4.2 Analysis of Eight Synoptic Weather Patterns 4-5
4.2.1 Synoptic Weathers in Taiwan 4-5
4.2.2 Analysis of Eight Cases 4-7
4.3 Analysis of Querying Data 4-21
4.4 Analysis of Dose Assessment Data 4-23
Chapter 5 Development of the Decision Support System 5-1
5.1 System Environment 5-1
5.2.1 Hardware and Software 5-1
5.2.2 System Structure and Design 5-4
5.2 Operation Procedure of ERDMS 5-7
5.3 Modular Analysis 5-9
5.3.1 Source Term Module 5-10
5.3.2 Meteorological Module 5-17
5.3.3 Simulation Module 5-20
5.3.4 Impact Assessment Module 5-21
5.4 Analysis of Data Query Sub-systems 5-29
5.4.1 Plant Specific Information 5-30
5.4.2 Nuclide Materials Data 5-31
5.4.3 Emergency Response Organization 5-32
5.4.4 Monitoring Stations 5-33
5.4.5 Hospital, Police, Fire and School 5-36
5.4.6 Population 5-37
5.5 Maintenance Sub-system 5-38
Chapter 6 Environmental Applications 6-1
6.1 Emergency Preparedness and Response 6-1
6.1.1 Three Evaluation Subsystems in ERDMS 6-1
6.1.2 Emergency Accidental Analysis 6-3
6.1.3 Protection Actions Guides (PAGs) 6-5
6.1.4 Protective Actions and Exposure Pathways 6-7
6.1.5 Environmental Management 6-9
6.1.6 Case Study (1) 6-10
6.1.7 Case Study (2) 6-30
6.2 Geographical Information System Applications 6-49
6.2.1 Application of Characteristics 6-49
6.2.2 Application for Dispersion Simulation 6-50
6.2.3 Geographical Application 6-51
6.3 Monitoring Applications 6-52
6.3.1 Objective of Environmental Monitoring in Emergency Events 6-52
6.3.2 Radiation Monitoring for Assessing Contaminations 6-52
6.3.3 Monitoring Related with Dose Estimation and Countermeasures 6-56
6.4 Environmental Restoration 6-57
6.4.1 Preparedness of Environmental Restoration 6-58
6.4.2 Decontamination Measures 6-58
Chapter 7 Conclusion and suggestion 7-1
7.1 Conclusions 7-1
7.2 Suggestions 7-2
Reference
Anon C., “GPS/GIS Applications for Emergency Response”, Public Works, 125(10), 96-98, 1994.
Applied Physics Laboratory. “A Systems Study of Regional Air Transport Modeling for Emergency Response Application” Rep. No. PPSE T-22, The Johns Hopkins University, Baltimore, Maryland, USA, 1983.
Bonelli, P., Calori G., and Frinzi G., “A Fast Long-Range Transport Model for Operational Used in Episode Simulation. Application to the Chernobyl Accident’, Atmospheric Environment, 26A, 2523-2535, 1992.
Chang, N. B. and Wang, S. F., “The Development of an Environmental Decision Support System for Municipal Solid Waste Management,” Computers, Environment and Urban System, 20(3), 201-212, 1996.
Chang, N. B., Wei, Y. L., Tseng, C. C., and Kao, C. Y., “The Design of a GIS-based Decision Support System for Chemical Emergency Preparedness and Response in an Urban Environment,” Computers, Environment and Urban System, 21(1), 67-94, 1997.
Chang, N. B., Chen, H. W., Ning, S, K, Jeng, K. Y., and Lee C. S., “Prediction and Evaluation of Non-point Pollutant Loads for the Reservoir Watershed via the use of GIS/GPS/RS Information Technologies and Numerical Models,” Water International, 26(2), 239-252, 2001.
Chang, Y. C., Chang, N. B., Ma, G. D. “Internet Web-based Information System for Handling Scrap Vehicles Disposal in Taiwan,” Environmental Modeling and Assessment, 6(4), 1-14, 2001.
Chang, W. B., “Evaluation of Accident from Nuclear Power Plant Using Gaussian Puff Model Instead of Gaussian Plume Model”, Master's Thesis, National Tsing-Hua University, Taiwan, R.O.C., 1987.
Davis, C. G., Bunker, S. S., and Mutschlecner, J. P., “Atmospheric Transport Models for Complex Terrain,” Journal of Climate and Applied Meteorology, 23, 235-238, 1984.
Downer, R., Kurtz, C., & Ferson, S., “Integration of environmental models in geographical spreadsheet”, In Computer Techniques in Environmental Studies IV (P. Zannetti), Computational Mechanics Publication, Southampoton, England, 797-804, 1992.
Eder E., Dehos R. and Schorling M., “On-line Calculation of the Dispersion of Radioactive Substances in Air on the Basis of a Lagrangian Model”, KernTechnik, 62, 227-231, 1997.
El-Racy, M., Farid, A. A., Nasr, S. M., & EI-Gamily, H. I., “Remote Sensing and GIS for an Oil Spill Contingency Plan, Ras-Mohammed, Egypt.”, International Journal of Remote Sensing, 17(11), 2013-2026, 1996.
Ehrhardt J. and Kelly G. N., “The RODOS System: Decision Support for Off-Site Emergency Management in Europe”, Sixth Topical Meeting on Emergency Preparedness and Response, 399-402, 1997.
Frank J. Congel, “Technical Basis for Offsite Emergency Planning in the United States”, Proceedings of a Joint NEA/CEC Workshop on Emergency Planning in Case of Nuclear Accident, 45-54, 1989.
Fodor W. J. and Knoy J., “New Approaches in Integrated Planning for Responses to Accidental Releases of Highly Toxic or Radioactive Materials”, Sixth Topical Meeting on Emergency Preparedness and Response, 261-266, 1997.
Fraser G., “An Overview of European Commission Projects Relating to Nuclear Emergency Preparedness and Response”, Sixth Topical Meeting on Emergency Preparedness and Response, 49-52, 1997.
Fruehauf G. P., Halpern P., and Lester P., “Objective Analysis of a Two-dimensional Scalar Field by Successive Corrections Using a Personal Computer”, Environmental Software, 3(2), 72-80, 1988.
Gargett J. and Appelbaum J., “Information System for Radiological Emergency Preparedness – Comprehensive Software Systems Prove their Value in Action”, Sixth Topical Meeting on Emergency Preparedness and Response, 695-698, 1997.
Grell G.A., Dudhia J. and Stanffer D.R., “A Description of the Fifth-Generation Penn State /NCAR Mesoscal Model (MM5),” NCAR/TN-398+STR, Dec., 1994.
Hanna S. R. and Drivas P. J., “Guidelines for Use of Vapor Cloud Dispersion Models”, New Jersey: Center for Chemical Process Safety, American Institute of Chemical Engineering, 1987.
Hamit F., “GIS/GPS System for Fire and EMS Dispatch: Imaging Enabled”, Advanced Imaging, 72(1), 1-4, 1997.
Jame B. O’Brien, “Insights on Emergency Action Levels”, Advances in Dispersion Modeling I, 605-608, 1997.
Kashiwagi T. & Takeda T., “Development of a System to Support Emergency Operations Using a Computer Mapping System”, In Proceedings of GIS AM/FM Asia '97 & Geoinformatics '97, Taipei, Taiwan, 235-242, 1997.
Ken-Hui Chang, Fu-Tien Jeng, Ya-Ling Tsai, Pay-Liam Lin, “Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions” , Atmospheric Environment, 34, 3281-3295, 2000.
King D. S. and Bunker S. S., “Application of Atmospheric Transport Models for Complex Terrain”, Journal of Climate and Applied Meteorology, 23, 239-248, 1984.
Kirsti J., “Empirical Scavenge Coefficients of Radioactive Substances Related from Chernobyl”, Atmospheric Environment, 25, 263-270, 1991.
Lang S. W., Li-Chi C. Po, John M. Link & Francis Kenney, “The window-based PC simulator for Taiwan power company’s nuclear emergency exercises ”, Taiwan Power Company (TPC), 1999.
Li S. H. & Yang L. S., “Urban Emergency Service and Fire Facility Apparatus Distribution”, Proceedings of GIS AM/FM Asia '97 & Geoinformatics '97, Taipei, Taiwan, 329-334, 1997.
Lirnavirta, A., “The Use of GIS-system in Catastrophe and Emergency Management in Finish Municipalities”, Computers, Environment and Urban Systems, 19(3), 171-178, 1995.
Maryon R.H. and Buckland A.T., “Diffusion in a Lagrangian Multiple Particle Model:A Sensitivity Study”, Atmospheric Environment, 28(A), 2019-2038, 1994.
Nelson L. Seaman, ” Meteorological modeling for air-quality assessments “, Atmospheric Environment, 34, 2231-2259, 2000.
Paolo Zannetti, Air Pollution Modeling, Computational Mechanics Publications Southampton Boston, Van Nostrand Reinhold, New York, 141-261, 1990.
Po Li-Chi., “ The development of PCTRAN® ”, Nuclear Engineering International, 36-39, 1993.
PSU/NCAR Mesoscale Modeling System Tutorial Class Notes: MM5 Modeling System Version 2, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research., 1998.
Ritchie L. T., Johnson J. D., and Blond R. M., “Calculation of Reactor Accident Consequence (CRAC2)” NRC report, NURGE/CR-2326, Sandia National Laboratory, New Mexico, USA, 1983.
Robert P. Adis, “Atmospheric Modeling for Emergency Response in the Nuclear Industry”, Advances in Dispersion Modeling I, 649-651, 1997.
Saltbones J., Foss A. and Bartnicki J., “Real-time Dispersion Model for Severe Nuclear Accidents, Tested in the European Tracer Experiment”, Systems Analysis, Modeling&Simulation, 25, 263-279, 1996.
Smolarkiewicz P. and R. Rotunno, “Low Frond number flow past three dimensional obstacles. Part II:Upwind flow reversal zone” .J. Atmos. Sci., 47,1498-1511, 1990.
Sprague R. H. Jr and Watson H. J. (editors), Decision Support Systems: Putting Theory into Practice, third edition, Prentice-Hall, Inc., New Jersey, USA, 1993.
Summer W., “GIS and Soil Erosion Models as Tools for the Development of Soil Conservation Strategies”, Environmental Systems (Vol.II), (P. Zannetti), Computational Mechanics Publication, Southampoton, England, 303-310, 1994.
Tsakiris G., & Salahoris M., “GIS Technology for Management of Water Distribution Networks”, Water Supply Systems (E. Cabrera & K. Martinez), Computational Mechanics Publication, Southampoton, England, 361-378, 1993.
US Atomic Energy Commission, “Meteorology and Atomic Energy”, pp.242, 1968.
US Environmental Protection Agency, “USEPA Manual of Protective Action Guides and Protective Actions for Nuclear Incidents,” USEPA/400R/92001, 1992.
US Nuclear Regulatory Commission, “Regulatory Guide 1.109 Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR part 50, Appendix I”, 1977.
USEPA, “USEPA Manual of Protective Action Guides and Protective Actions for Nuclear Incidents”, USEPA/400R/92001, Washington, D.C., USA, 1992.
Verver G.H.L. and De Leeuw F.A.A.M., “An Operational Puff Dispersion Model”, Atmospheric Environment, 26A, 3179-3193, 1992.
Willian K. Evans, “Realistic Dose Projection Using Mesorem96”, Sixth Topical Meeting on Emergency Preparedness and Response, 201-205, 1997.
Xu K., Baron F., Schnettler J., & Lewis, D., “GIS Application for Miami Transportation System: Hurricane Emergency Preparedness”, Proceedings of the 1996 Conference on Natural Disaster Reduction, Maimi, FL, 107-108, 1996.
Yeung M. R. and Ching E. M. K., “RADIS—A Regional Nuclear Accident Consequence Analysis Model for Hong Kong”, Nuclear Technology, 101, 123-1390, 1993.
Yoshikawa T., Kimura F., Koide T. and Kurita S., “An Emergency Computation Model for the Wind Field and Diffusion during Accident Nuclear Pollutants Releases”, Atmospheric Environment, 24A, 2739-2748, 1990.
Zannetti P. N. Al-Madani, Simulation of Transformation, Buoyancy and Removal Process by Lagrangian Particle Methods, Fourteenth ITM Meeting on Air Pollution Modeling and its Application, Copenhagen, Denmark, 223-234, 1983.
Zhu Q., & Stillman M.J., Design of an Expert System for Emergency Response to a Chemical Spill, Journal of Chemical Information and Computer Science, 35(6), 956-968, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top