跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李文峰
研究生(外文):Wen-Feng Lee
論文名稱:以MEA溶液去除煙道氣中二氧化碳之研究
論文名稱(外文):A study using MEA removes carbon dioxide in fuel gas
指導教授:朱信朱信引用關係
指導教授(外文):Chu Hsin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:159
中文關鍵詞:乙醇胺二氧化碳吸收速率
外文關鍵詞:Carbon dioxiceMonoethanoamineAbsorption rate
相關次數:
  • 被引用被引用:28
  • 點閱點閱:913
  • 評分評分:
  • 下載下載:162
  • 收藏至我的研究室書目清單書目收藏:2
大氣中二氧化碳之增加主要係由化石燃料大量消耗之結果,二氧化碳會吸收由地球表面反射之紅外線而造成溫度上升、海平面上升等氣候變遷而稱之為”溫室效應”。由氣候綱要公約及京都議定書之協定均可瞭解:此時已屆研究及發展各項減少溫室效應氣體技術之際,而如何降低二氧化碳之最大排放源產生之二氧化碳更為首要之務。
本研究將建立一套去除煙道氣中二氧化碳系統之攪拌槽型式實驗設備,在反應槽氣液相攪拌轉速分別為235 rpm及200 rpm下,以MEA(aq)、DEA(aq)、MDEA(aq)、NH3(aq)、NaOH(aq)及混合醇胺溶液為吸收劑測定各種操作狀況下之吸收速率,以瞭解其較佳之吸收劑及較適之操作條件,並求得此系統的各項反應動力數據。
本研究成果如下:
1.以MEA吸收CO2:
在溫度50 ℃,進氣CO2濃度15% (V/V),進氣流量2~12 L/min,吸收劑MEA=10~50% (W/W)情況下。結果顯示當氣體流速增加,其吸收速率會隨之增加,但隨著氣體流速增加其改變吸收速率的量會越少。而在不同濃度的吸收劑下,當吸收劑的濃度越高,其吸收速率越快,然在MEA=30%時的吸收速率為最大。
在溫度50 ℃,氣體流量12 L/min,進氣CO2濃度5~20%(V/V) ,吸收劑MEA=10~50% (W/W)的情況下。結果顯示當進氣CO2濃度越高其吸收速率越快,而吸收劑的情形跟上述雷同。
2.改變溫度對MEA吸收CO2的影響:
在溫度為30~70 ℃,氣體流量12 L/min,進氣CO2濃度15%,吸收劑為MEA=10~50% (W/W)情形下。結果顯示當溫度越高其吸收速率會越高,而不同濃度的MEA其情形跟上述雷同。
3.加入NOx、SO2對MEA吸收CO2之影響:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15%,加入NOx = 300~800 ppm或SO2 = 500~1500 ppm或同時加入NOx=500 ppm + SO2=1000 ppm,吸收劑為MEA=10~50% (W/W)的情形下。其結果顯示加入NOx及SO2後,NOx及SO2的存在會對MEA吸收CO2有降低的作用。
4.比較混合醇胺同時吸收CO2+NOx+SO2之關係:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15% (V/V) ,NOx = 500 ppm,SO2 = 1000 ppm的情形下,吸收劑為MEA/NH3= 30/1、30/3,MEA/DEA=30/10、30/20,MEA/MDEA=30/5、30/10。其結果顯示,加入NH3有助於吸收速率的增加,同時又抵抗了NOx、SO2對MEA吸收CO2不良的影響,加入越多的NH3吸收CO2效果越好。加入DEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。加入MDEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。
5.比較不同吸收劑吸收CO2之關係:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15% (V/V) 情行下,吸收劑為NH3=0.57~2.51M、NaOH=1~3M、MEA=1.64~4.91M、DEA=0.98~2.93M、 MDEA=0.87~2.62M。其結果為吸收速率的快慢分別為:NH3>MEA>NaOH>DEA>MDEA。
6.由不同吸收劑濃度之MEA(10~50%)吸收不同進流濃度之CO2(5~20%),中可以得到下面之反應速率關係式。在不同溫度(30~70℃)的操作條件下,我們可以得到活化能、碰撞因子反應速率常速為:
Ea=32.26 Kj/mol A=2.573*105
7.本研究根據SAS軟體回歸求得一經驗式
而各參數對吸收速率之影響程度依序為MEA濃度、二氧化碳進氣濃度、操作溫度、Flow rate、NOx進氣濃度及SO2進氣濃度。
The increase in atmospheric carbon dioxide has primarily resulted from the consumption of fossil fuels for energy. The atmospheric CO2 is transparent to visible light but absorbs infrared radiation returning from the earth. Thus, the atmospheric CO2 may alter the radioactive balance of the earth and raise the global temperature. This so-called “greenhouse effect”could dramatically cause global climatic and environmental changes in precipitation, storm patterns, and increases in sea level.Therefore, it is the time to research and develop technologies for reducing CO2 emissions from energy production system that is the largest source of CO2 emissions.
This study was set up a bench-scale agitated vessel reactor system to removal CO2 in the simulated fuel gas. In reactor, the stir turning of gas phase is 235 rpm and liquid phase is 200rpm. To measure the absorption rate of CO2 at various operating conditions; followed by using MEA(aq); DEA(aq); MDEA(aq); NH3(aq); NaOH(aq) and mixing amine as the additive and absorbent, respectively, to determine the chemical kinetics data.
The result of this study shows the following:
1.The effect of MEA concentration on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 2~12 L/min and absorbent MEA =10~50% (w/w). The result shows that the absorption rate goes up by increasing the gas flow rate but the amount of changing absorption rate decrease with increasing the gas flow rate. In different concentration of absorbent condition, the absorption rate goes up by increasing the concentration of absorbent, however, the absorption rate is the fast in MEA=30%.
It is conducted condition: temperature 50℃, CO2 concentration 5~15%(V/V), gas flow rate 12 L/min and absorbent MEA =10~50% (w/w). The result shows that the more higher CO2 inert concentration the more fast absorption rate, and the condition of absorbent is alike the above-mentioned.
2.The effect of operating temperature on CO2 absorption rate.
It is conducted condition: temperature 30~70℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min and absorbent MEA=10~50% (w/w). The result shows that the absorption rate goes up by increasing temperature, and the condition of absorbent is alike the above-mentioned.
3.The effect of NOx and SO2 on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, entering NOx=300~800 ppm or SO2=500~1500 ppm or NOx =500 ppm + SO2=1000 ppm and absorbent MEA =10~50% (w/w). The result shows that the absorption rate reduces by entering NOx and SO2.
4.The effect of additives CO2 absorption rate
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, NOx=500 ppm, SO2=10000 ppm and absorbent MEA/NH3 = 30/1, 30/3, MEA/DEA = 30/10, 30/20, MEA/MDEA = 30/5, 30/10. The result shows that entering NH3 can help to increase absorption rate and compete to NOx, SO2 bad affecting for MEA absorb CO2 and the absorption rate increase with increasing NH3 concentration. When liquid was added with DEA or MDEA, it has a bad affecting for MEA absorbing CO2, and the more concentration the bad absorption rate.
5.The effect of absorbent type on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, and absorbent concentration NH3=0.57~2.51M; NaOH=1~3M; MEA=1.64~4.91M; DEA=0.98~2.93M; MDEA=0.87~2.62M. The result shows that the absorption rate is NH3>MEA>NaOH>DEA>MDEA.
6.We get the reaction kinetics equation form difference absorbent concentration (MEA=10~50%) absorb difference CO2 concentration (CO2=5~20%).
In difference operating temperature (30~50℃), we can get active energy , factor of colliding and reaction constant equation.
Ea=32.26 Kj/mol A=2.573*105
7.According to the experimental data, we get an regression equation by using the computer program SAS:The sequence of the effect by these factors is MEA concentration, CO2 inert concentration, operating temperature, flow rate, NOx inert concentration and SO2 inert concentration.
總目錄
第一章 前言1
1-1 研就動機1
1-2 研究方法5
1-3 研究目的7
第二章 文獻探討9
2-1 二氧化碳的來源、特性及對環境的影響9
2-1-1 二氧化碳的來源、特性9
2-1-2 溫室效應及對地球環境的影響9
2-2 二氧化碳的控制技術18
2-2-1 管前處理技術18
2-2-2 物理性處理二氧化碳技術19
2-2-3 化學性處理二氧化碳技術20
2-2-4 生物性處理二氧化碳技術21
2-3 以胺及氨吸收法去除二氧化碳23
2-4 混合液吸收CO227
2-5 吸收理論29
2-5-1 氣體吸收的質傳理論29
2-5-2 雙膜理論有關反應動力之各項參數35
第三章 實驗設備及方法48
3-1 實驗設備48
3-1-1 氣體進料系統48
3-2-2 反應器51
3-1-3 取樣系統54
3-1-4 分析儀器55
3-2 實驗材料58
3-2-1 煙道氣部分58
3-2-2 標準氣體部分58
3-2-3 藥品59
3-3 實驗方法60
3-3-1 實驗規劃60
3-3-2 實驗程序與操作條件62
3-3-3 實驗前的檢定與預備工作65
3-3-4 實驗步驟66
第四章 實驗結果與討論69
4-1 儀器之校正及測漏69
4-1-1 系統測漏69
4-1-2 Mass flow monitor之校正69
4-1-3 攪拌槽之校正73
4-1-4 分析儀器之校正74
4-2 穩定實驗76
4-2-1 CO2穩定實驗76
4-2-1 SO2穩定實驗77
4-2-3 NOx穩定實驗78
4-3 數據分析85
4-3 實驗之結果90
4-4-1 以MEA吸收不同進氣流量的CO290
4-4-2 以MEA吸收不同濃度之CO293
4-4-3 溫度對MEA吸收CO2之影響99
4-4-4 以MEA同時吸收CO2+NOx103
4-4-5 以MEA同時吸收CO2+SO2105
4-4-6 以MEA同時吸收CO2+NOx+SO2107
4-4-7 以MEA吸收CO2之貫穿曲線110
4-4-8 各項參數對吸收速率的經驗式113
4-4-9 以MEA及混合醇胺吸收CO2115
4-4-10 以MEA、DEA、MDEA吸收CO2117
4-4-11 液相中C、S、N的濃度分析120
4-4-12 論文比較122
第五章 結論與建議124
5-1 結論124
5-2 建議126
參考文獻127
附錄134
附錄一135
附錄二143
附錄三148
附錄四149
表目錄
表3-1 Model 100/200/400 type CO/CO2/O2nalyzer之規格56
表3-2 NOx/SO2分析儀之測量範圍56
表3-3 實驗規劃60
表3-4 實驗操作條件64
表4-4-1 MEA吸收CO2之貫穿時間110
表4-4-2 經驗式中各變數之意義及其範圍114
表4-4-3 經驗式中各參數對吸收速率之F值114
表4-4-4 液相中CO2負載計算120
表4-4-5 論文比較表123
附表1 CO2與醇胺類反應相關研究(MEA)135
附表2 CO2與醇胺類反應相關研究(DEA)136
附表3 CO2與醇胺類反應相關研究(三級醇胺)137
附表4 氨氣、氨水及CO2之物理化學特性138
附表5 MEA、DEA及MDEA之物理化學特性139
附表6 Model 100/200/400 type CO/CO2/O2 analyzer之規格140
附表7 各物種之Lennard-Jones parameters147
附表8 Chapman-Enskog equation中參數列表計算147
附表9 The collision integral Ω147
附表10 不同進氣流量及MEA濃度變化149
附表11 不同進氣CO2濃度及MEA濃度變化151
附表12 溫度變化及MEA濃度變化153
附表13 氣相含CO2+NOx及MEA濃度變化154
附表14 氣相含CO2+SO2及MEA濃度變化156
附表15 氣相含CO2+NOx+SO2及MEA濃度變化157
附表16 NH3、NaOH、MEA、DEA、MDEA濃度變化158
附表17 各混合醇胺的viscosity159
附表18 Density and Viscosity of MEA159
圖目錄
圖1-3-1 研究架構圖8
圖2-1-1 大氣與雲層對太陽輻射的吸收與反射10
圖2-1-2 CO2對溫室效應影響示意圖11
圖2-1-3 Atmospheric carbon dioxide mixing ratios determined from the continuous monitoring programs at the 4 NOAACMDL baseline observatories16
圖2-1-4 IPCC估算在不同之溫室氣體二氧化碳的策略下,全球增溫趨勢17
圖2-5-1 被吸收物質在氣液界面間之濃度分布圖30
圖2-5-2 穿透理論之示意圖32
圖2-5-3 瞬間反應時氣液相之反應物在假想薄膜中的擴散情形41
圖2-5-4 瞬間反應時,氣液相反應物在假想膜中之濃度分佈圖43
圖2-5-5 在不同之Ei值下,增進因子對 變化之關係圖45
圖3-1 實驗設備圖50
圖3-2 攪拌槽系統53
圖3-3 取樣系統57
圖4-1-1 N2 Mass flow monitor之校正曲線70
圖4-1-2 Air Mass flow monitor之校正曲線71
圖4-1-3 CO2 Mass flow monitor之校正曲線71
圖4-1-4 NOx Mass flow monitor之校正曲線72
圖4-1-5 SO2 Mass flow monitor之校正曲線72
圖4-1-6 氣相攪拌之校正曲線73
圖4-1-7 液相攪拌之校正曲線74
圖4-2-1 CO2穩定實驗一80
圖4-2-2 CO2穩定實驗二80
圖4-2-3 CO2穩定實驗三81
圖4-2-4 CO2穩定實驗四81
圖4-2-5 SO2穩定實驗一82
圖4-2-6 SO2穩定實驗二82
圖4-2-7 SO2穩定實驗三82
圖4-2-8 NOx穩定實驗一83
圖4-2-9 NOx穩定實驗二84
圖4-2-10 NOx穩定實驗三84
圖4-4-1 MEA吸收不同進氣流量CO2之轉化率91
圖4-4-2 MEA吸收不同進氣流量CO2之吸收速率92
圖4-4-3 MEA吸收不同CO2濃度之吸收速率94
圖4-4-4 吸收速率對氣液膜間濃度的對數關係97
圖4-4-5 吸收速率對吸收劑濃度的對數關係98
圖4-4-6 不同溫度對MEA吸收CO2之吸收速率的影響101
圖4-4-7 反應速率數常(kmn)對溫度倒數的對數座標圖102
圖4-4-8 NOx濃度對MEA吸收CO2之影響104
圖4-4-9 SO2濃度對MEA吸收CO2之影響106
圖4-4-10 NOx與SO2對MEA吸收CO2之影響108
圖4-4-11 比較MEA同時吸收不同進氣組成之CO2吸收速率109
圖4-4-12 實驗貫穿曲線112
圖4-4-13 混合吸收劑吸收CO2之吸收速率116
圖4-4-14 不同濃度之吸收劑吸收CO2之吸收速率119
圖4-4-15 液相中CO2濃度理論值與實際測量值之比較121
附圖1 model 300 NDIR構造圖141
附圖2 model 300 NDIR的訊號處理141
附圖3 O2電觸媒分析儀式意圖142
Paul, J. and Pradier, C. M., ”Carbon Dioxide Chemistry: Environmental Issues”, The Royal Society of Chemistry, Cambridge, 1994.
C. David Cooper, F. C. Alley, ”Air Pollution Control: A Design Approach”,p 5-12, 1996.
Noel De Nevers, ”Air Pollution Control Engineering”, p 517-542, 1998.
Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisima, S., ” Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery”, Energy Convers. Mgmt. 36, 805, 1995.
Mackenzie L., Davis and David A., Cornwell, ” Introduction to Environmental Engineering”, p461-550, 1999.
Shepherd, W. D., “Energy Studies”,World Scientific Publishing Co. Pte. Ltd, 1998.
Kawa, Y., ”The role of CO2 removal and disposal”, Energy Convers. Mgmt. 36, p375 , 1995.
Teramoto, M.,Nakatani, R., Huang, Q. and Watari, T., ”Facilitated Transport of CO2 Through Supported Liquid Membranes of various Amine Solutions- Effects of Rate and Equilibrium of Reaction between CO2 and Amine”, J. Chem. Eng of Japan 30, p328-335, 1997.

Xu, S., Otto, F. D. and Mather, A. E., ”Physical properties of aqueous AMP solutions”, J. chem. Eng Data p36,71-75, 1991.
Blauwhoff, P. M. M., Versteeg, G. F. and van Swaaij, W. P. M.,” A study on the reaction between CO2 and alkanolamines in aqueous solution”, Chem. Eng. Sci. 38, p1411-1429, 1983.
Crooks, J. E. and Donnellan, J. P., ”Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution”, J. chem. Soc, Perkin Trans. II, p331-333, 1989.
Danckwerts. P. V. and Sharma, M. M., ”Absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide) ”, Chem. Engr. 10, CE 244-288, 1966.
Danckwerts. P. V., ” The reaction of CO2 with ethanolamines”, Chem. Eng. Sci. 34, p443-446, 1979.
Hikita, H., Asai, S., Ishikawa, H. and Honda, M., ” The kinetics of reactions of carbon dioxide with monoethanola nine. Diethanolamine and triethanolamine by a rapid mixing method”, Chem. Eng. J. 13, p7-12, 1977.
Roberts, D, and Danckwerts, P. V., ” Kinetics of CO2 absorption in alkaline sloutions-1. Transient absorption rates and catalysis by arsenite”, Chem. Eng. Sci. 17, p961-969, 1961.
Bai H. and Yeh An Chin,”Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions”, The Science of Total Environment, 228, p121-133, 1999.
Bai H. and Yeh An Chin,”Removal of CO2 greenhouse gas by Ammonia Scrubbing”, Industrial and Engineering Chemistry Research, 36, p2490-2493, 1997.
Jiun-Jie Ko, Meng-Hui Li, ” Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water”, Chemical Engineering Science 55, p4138-4147, 2000
Sheng H. Lin, Ching T. Shyu, ” Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column”, Waste Management 19, p255-262, 1999
Laddha, S. S. and Danckwerts, P. V., ” Reaction of CO2 with ethanolamines: kinetics from gas-absorption”, Chem. Eng. Sci, 36, p479-482, 1981.
Littel, R. J., Versteeg, G. F. and van Swaaij, W. P. M.,“Kinetics of CO2 with primary and secondary amines in aqueous solutions -I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines”, Chem. Eng. Sci., 47, p2027-2035, 1992.
Siggia, S., Hanna, J. G. and Kervenski, I. R., “Quantitative analysis of mixtures of primary, secondary, and tertiary aromatic amines”, Analyt. Chem., 12, p1295-1297, 1950.
Versteeg, G. F. and van Swaaij, W. P. M, ”Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. chem. Eng. Data 33, p29-34, 1988b.
Haimour, N., Bidarian, A. and Sandall, O. C.,” Kinetics of the reaction between carbon dioxide and methyldiethanolamine”, Chem. Eng. Sci., 42, p1393-1398, 1987.
Little, R. J., van Swaaij, W. P. M. and Versteeg, G. F, ” The kinetics of carbon dioxide with tertiary amines in aqueous solution”, A.I.Ch.E. J. 36, p1633-1640, 1990b.
Sartori, G., Ho, W. S., Savage, D. W., Chludzinski.G.R. and Wiechert. S., ”Sterically-hindered amines for acid-gas absorption Separation Purification Methods 16”, p171-200, 1987.
Say, G. R., Heinzelmann, F. J., Iyengar, J. N., Savage,D.W., Bisio, A. and Sartori, G., ” Treating acid and sour gas: A new hindered amine concept for simultaneous removal of CO2 and H2S from gases”, Chem. Eng. Prog. 10, p72-77, 1984.
Sharma, M. M., ” Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines and catalysis by Bronsted bases of the hydrolysis of COS”, Trans. Faraday. Soc. 61, p681-688, 1965.
Teng, T.T. and Mather, A. E., ” Solubility of H2S, CO2 and their mixtures in an AMP solution”, Can. J. chem. Eng., p67,846-850, 1989.
Teng, T.T. and Mather, A. E., ” Solubility of CO2 in AMP solution”, J. chem. Eng. Data 35,p410-411, 1990.
Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., ” Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions”, J. chem. Eng. Data 36, p130-133, 1991.
Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., ” CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column”,Chem. Eng. Sci. 47, p381-390, 1992.
Erga. O. and Lidal. H., ” Equilibrium model for CO2 absorption in an aqueous solution of 2-amino-2-methyl-1-propanol”, Chem. Eng. Technol., 14, p394-398, 1991.
Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., ” Solubility and diffusivity of N2O and CO2 in aqueous solutions of 2-amino-2methl-1-propanol”, J. chem Eng. Data 38, 78-82, 1993.
Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., ” Kinetics of CO2 into aqueous solutions of 2-amino-2methl-1-propanol”, Chem. Eng Sci 50, p3587-3598, 1995.
Li, M. H., and Lee, W. C., ” Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + Methyldiethanolamine+ water) and in (Diethanolamine + 2-Amino-2-methyl-1-propanol+ water) ”, J. chem. Eng. Data 41, p551-556, 1996.
Li, M. H., and Chang, B. C., ” Solubilities of Carbon Dioxide in water+ monoethanolamine + 2-Amino-2-methyl-1-propanol”, J. chem, Eng. Data 39, p448-452, 1994.
Li, M. H., and Lai, M. D., ” Solubility and Diffusivity of N2O and CO2 in (monoethanolamine + Methyldiethanolamine+ water) and in (monoethanolamine + 2-Amino-2-methyl-1-propanol+ water) ”, J. chem. Eng. Data 40, p486-492, 1995.
Jimmy Xiao, Chih-Wei Li, Meng-Hui Li,” Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine” Chemical Engineering Science 55, p 161-175, 2000
Little, R. J., Versteeg, G. F. and van Swaaij, W. P. M, ” Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions”, J. chem. Eng. Data (in press), 1991b.
Little, R. J., Versteeg, G. F. and van Swaaij, W. P. M., ” Kinetics of CO2 with primary and secondary amines in aqueous solutions-I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines”, Chem. Eng. Sci. 47, p2027-2035, 1992.
Versteeg, G. F. and van Swaaij, W. P. M., ” Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. chem. Eng. Data 33, p29-34, 1988.
Anthony, L. H. and Robert, N. M., ” Mass Transfer-Fundamentals and Applications”, Pretice-Hall, Inc, 1985.
Harris, W. E. and Kratochvil B., ” An Introduction to Chemical Analysis”, CBS Inc, New York, 1981.
Bird, R. B., ”Transport Phenomena”, Wiley, New York, p495-518, 1960.
Welty, J. R. and Wicks, C. E. and Wilson, R. E., ”Fundamentals of Momentum, Heat, and Mass Transfer”, Wiley, New York, p471-507, 1960.
Rodriguez Sevilla, J. M., ” Absorption of SO2 Determination of mass tranfer coefficients in a continuous stirred-tank reactor”, International Chem. Eng., 33(1), p.85~91, 1993.
Tung-Chien Tsai, and Meng-Hui Li, ” Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions”, J. Chem. Eng. Data, 45, p341-347, 2000
Wang, Y. W., and Mather, A. E. ” Solubility of N2O in Alkanolamine and in Mixing Solvents”, Chem. Eng. J., 48, p31-40, 1992
Ralph H. Weiland, John C. Dingman, D. Benjamin Cronin, and Gregory J. Browning, ” Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends”, J. chem. Eng. Data 43, p378-382, 1998.
侯山林,「溫室效應問題之探討」,台灣經濟研究月刊,第14卷第8期,民國80年8月。
姜善鑫,「全球氣候變遷(上)」,環境教育季刊第十六期,p1-11,1993。
姜善鑫,「全球氣候變遷(下)」,環境教育季刊第十七期,p31-35,1993。
姜善鑫,「森林與氣候變遷」,環境教育季刊第三十期,p2-14,1998。
張耀仁,「造紙外的造福運動-因應CO2排放減量可行作法」,台灣經濟研究月刊,第22卷第6期,民國88年6月。
周嫦娥,「環境與經濟的夢魘」,台灣經濟研究月刊,第21卷第3期,民國87年3月。
潘守保,「以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究」,國立交通大學環工所碩士論文,民國87年6月,1998。
中華民國環科協會,「鋼鐵、塑化、水泥業對CO2排放減量之因應」講習會專輯,p.1-2,民國87年7月,1998。
柳中明,「全球氣候變遷對我國的衝擊」,環耕雜誌第七期,p52-59,1997
許振邦,「二氧化碳排放減量的衝擊與因應」,貿易週刊第1781期,民國87年2月11日。
陳詩叢、潘守保、葉安晉、白曛綾,「以混合醇胺溶液(MEA/AMP)去除二氧化碳氣體之填充式吸收塔設計」,國科會研究計畫NSC 88-2621-Z009-001,民國八十八年,1999。
李玉鈴,「台灣二氧化碳減量之因應對策與建議」,工業簡訊第二十八卷 一期,p22-42,1998。
邱崇銘,「以氨水溶液去除煙道氣中二氧化碳之反應動力研究」,成功大學環工所碩士論文,2000。
施育林,「在噴霧塔中以氨水溶液去除二氧化碳之研究」,成功大學環工所碩士論文,2001。
涂博維,「以亞氯酸鈉與氫氧化鈉在煙道氣中同時除硫除氮之反應動力研究」,國立成功大學環工所碩士論文,民國83年6月,1994。
李旂緯,「同時吸收二氧化硫與一氧化氮之研究」,中原大學化工所碩士論文」,民國76年7月。
廖彥智編譯,「有機化學」,高立出版,民國88年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top