跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫育勇
研究生(外文):Yu-Yun Wen
論文名稱:NO2干擾環形氣固分離器之氣相亞硝酸採樣的誤差
論文名稱(外文):NO2 Contribution to The Formation of HONO Artifact During Annular Denuder Sampling
指導教授:吳義林
指導教授(外文):Yee-Lin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:131
中文關鍵詞:HONO干擾生成環形氣固分離器
外文關鍵詞:Annular denuderHONO artifact
相關次數:
  • 被引用被引用:4
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
氣相亞硝酸(HONO)為大氣中重要的反應性氮氧化物(NOy)成分之一,因其夜間累積生成之高濃度值,至清晨光解生成一氧化氮(NO)和氫氧自由基(OH•),產生之大量氫氧自由基為一連串光化反應之起始劑,其累積生成機制主要為地表或建築物表面之異相生成及soot表面異相生成。
本研究目的在於確認環形氣固分離器應用於大氣中HONO量測之干擾情況。首先確認本實驗系統量測HONO干擾生成之品質:第一,實驗系統於採樣管前之HONO生成量僅佔總HONO干擾值之一半以下,第二,可能氣相反應生成HONO之有機soot於採樣系統中無法測得,且無法藉由去除實驗系統中soot來源而消除HONO干擾之生成,故排除soot之影響,結果確認所測得之HONO乃由環形氣固分離管中生成。接下來藉由文獻提及之HONO生成機制探討干擾生成機制,第一,由於NO對干擾生成並無貢獻,故排除生成機制:NO + NO2 + H2O → 2HONO;第二,由NO2管內異相生成之HONO大於HNO3生成量,故可排除生成機制:2NO2 + H2O → HONO + HNO3。故推測干擾機制為NO2於採樣管內直接異相還原生成HONO,而HONO干擾濃度隨著進氣NO2濃度增加而呈飽和生成曲線關係。對於還原劑的探討方面,由實驗結果發現HONO干擾生成和塗敷溶液成分無關,干擾濃度隨著串連管數的增加而降低,且不隨採樣時間的增加而降低,而分析結果中發現HONO生成濃度正比於有機氧化產物甲酸之生成濃度,故結論為促使NO2還原生成HONO干擾之還原劑為存在於來源氣體中的有機物質。在環境因素的探討方面,HONO干擾生成濃度正比於相對濕度和SO2濃度,而O3之存在會促使HONO干擾量氧化生成HNO3干擾量。值得注意的是, HONO干擾生成隨著流量上升而減少,HNO3干擾生成則相對增加。
野地採樣的部份,以實驗室內HONO干擾誤差之實驗結果修正野地採樣之實測值發現修正前後之濃度時間趨勢相同,而HONO干擾生成濃度以夜晚之高污染程度測站之濃度最大,HONO干擾實測值程度以中午時刻最大,而大氣中存在之高O3氧化HONO成為HNO3干擾量程度並不大,另外,大氣中SO2亦會貢獻HONO之干擾量。由平均干擾比值發現HONO干擾生成量大於實測值之50%以上,故環形氣固分離管所量測之HONO濃度需扣除干擾之貢獻量,才是大氣中真實濃度。
Gaseous nitrous acid (HONO) is one of odd nitrogen species (NOy) in the atmosphere. Nitrous acid is considered to play an important role in atmospheric chemistry, mainly due to its ability to produce OH-radicals and NO through direct photolysis in the early morning. Therefore, The OH-radicals are the main initiators of the chain-reactions which lead to photochemical smog. The main formation mechanism for HONO is the heterogeneous production on the surfaces of ground, buldings and soot.
The purpose of this study is to understand the interferences of HONO measurements during denuder sampling. At first, we want to ensure the quality of HONO artifact measurement. First, below half of the artifact nitrite forms before sampling denuder. Second, the concentration of organic soot as a sudstract for the NO2 heterogeneous reaction is below detection limit. On the other hand, the formation of HONO artifact cannot be inhibited by replacing soureces of soot in the sampling system. So the effect of soot can reasonably be negligible at gas sources. Therefore, it ensured that a small proportion of the HONO interferent is present at the concentrations encountered. Then we discuss the formation mechanism for HONO artifact. First, the exist of NO does not contribute to the formation of HONO artifact. So the formation mechanism for HONO artifact is not NO + NO2 + H2O → 2HONO. Second, Our experiment show that HONO which originates from NO2 heterogeneous reaction in the denuder is much more than HNO3. So 2NO2 + H2O → HONO + HNO3 is not the main formation mechanism for HONO artifact, too. In conclution, the main formation mechanism is the NO2 reducing reaction directly in the annular denuder. The concentration of artifact nitrite shows relative NO2 dependence with saturation reached at 40-50 ppb NO2. However, HONO artifact is independent of components of coating solution. If two denuders are placed in series, the amount of nitrite found in the first denuder is more than the second one. Moreover, HONO artifact kept constant with increasing sampling time. Finallly, Ion chromatographic analysis of samples showed that artifact nitrite in direct proportion to the concentration of organic oxidized formate. In conclusion, the reducing agent that can lead to the formation of artifact nitrite from NO2 is the organic material which exists in productive gas. At last, we discuss about the situation of atmosphere. The artifact nitrite correlates directly with relative humidity and SO2 concentration. In addition, during the experiment, it was shown the conversion of nitrite to nitrate in the presence of ozone. It is worth noting that artifact nitrite decreased with increasing flow rate. The artifact nitrate increased correlatively.
In the field experiment, field measurements had to be modified from laboratory studies. It can be seen that HONO diurnal cycles are similar whether the concentrations are modified or not. There appears to be a maximum concentration of HONO artifact at night in the polluted sites. But the highest effect of NO2 interference is observed around noon. It should be pointed out that the conversion of nitrite to nitrate in the presence of ozone does not proceed at an appreciable extent during field experiments. In addition, SO2 might have caused a positive artifact in our field experiments. In conclusion, a poor accuracy is achieved because the ratio of interference is beyond half of measurement. It is necessary to separate the species of interest from NO2 during sampling step and evaluate individual contribution to the total nitrite. Then, an accurate determination of nitrous acid can be performed.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧 5
2.1 大氣中HONO之簡介 5
2.1.1 NOy物種於大氣中之反應 5
2.1.2 HONO於大氣中之重要性 6
2.1.3 大氣中OH•的來源 7
2.2氣相HONO於大氣中之反應 8
2.2.1 同相生成機制 8
2.2.2 表面異相生成 9
2.2.3 soot表面異相生成 12
2.2.4 去除機制 17
2.3 HONO之實地量測 17
2.3.1 HONO量測方法之演進 17
2.3.2 環形氣固分離器之原理及應用 19
2.4 HONO偵測誤差之研究 23
2.4.1 干擾原因:NO2、NO 23
2.4.2 干擾原因:PAN 25
2.4.3 其他干擾因子 26
2.4.4 修正干擾之方法 26
第三章 研究方法 35
3.1 採樣方法 35
3.2 分析方法 37
3.2.1 離子分析儀(IC) 37
3.2.2 NOx/NO/NO2 偵測儀 37
3.2.3 SO2偵測儀 38
3.2.4 O3偵測儀 40
3.3 氣體製造設備 40
3.3.1 零基氣體製造儀 40
3.3.2 動態氣體校正器(Dynacalibrator) 41
3.3.3 臭氧製造儀 41
3.3.4 衝擊瓶 42
3.4 確認干擾生成反應 42
3.4.1 確認NO、NO2反應性實驗 42
3.4.2 串聯Denuder之研究 43
3.5 證實HONO干擾生成之真實性 44
3.5.1 soot反應影響之研究 44
3.5.2 混合槽停留時間影響之研究 46
3.5.3 串聯空管實驗 46
3.5.4 石英濾紙採樣之研究 46
3.6 反應影響因子之研究 46
3.6.1 採樣時間影響之研究 47
3.6.2 採樣流量影響之研究 47
3.6.3 相對濕度影響之研究 48
3.6.4 O3影響之研究 49
3.6.5 管內塗敷物質因子之探討 50
3.7 野外採樣 51
3.8 分析儀之偵測極限 51
3.9 空氣中HONO濃度之換算方法 52
第四章 結果與討論 62
4.1 確認干擾生成反應 62
4.1.1確認 NO、NO2反應性之實驗結果 63
4.1.2串聯Denuder採樣之結果 65
4.2 探討HONO測值於Denuder管外生成之可能性 71
4.2.1 評估soot反應影響之結果 72
4.2.2 石英濾紙採樣之結果 73
4.2.3 氣體於採樣管前停留時間之影響 73
4.2.4 串聯空管實驗之結果 74
4.3 干擾反應影響因子之探討 80
4.3.1 採樣時間影響之結果 80
4.3.2 採樣流量影響之結果 81
4.3.3 相對濕度影響之結果 84
4.3.4 O3影響之結果 85
4.3.5 SO2影響之結果 86
4.3.6 未知殘存物質影響之結果 86
4.3.7 Denuder管內生成HONO干擾值之可能性 91
4.4 野外採樣 100
第五章 結論與建議 122
參考文獻 126
表目錄
表2-1 HONO於大氣中可能進行之反應及其反應速率常數 29
表2-2 整理文獻中提及之HONO生成機制 30
表2-3 國外文獻中量測HONO的濃度 32
表2-4 Denuder量測物種之吸收溶液組成 34
表4-1 HONO干擾實驗結果整理 99
表4.2 野地採樣結果日夜總平均值 101
表4.3 野地採樣結果白天總平均值 102
表4.4 野地採樣結果夜間總平均值 102
表4.5 野地採樣結果夜間減去白天之平均差值 103

圖目錄
圖1-1 研究架構及流程圖 4
圖2-1 NOy物種於大氣中之反應 28
圖2-2 HONO之表面異相生成機制及發生之濃度範圍 29
圖2-3 環形氣固分離管之剖面圖(摘自Hering, 1989) 33
圖2-4 環形氣固分離器標準採樣組裝圖 (摘自USEPA, 1989) 33
圖3-1 環形氣固分離器採樣系統 53
圖3-2 環形氣固分離管內部剖面圖 53
圖3-3 動態氣體校正器之內部配置圖 54
圖3-4 衝擊瓶採樣裝置圖 54
圖3-5 NO、NO2反應性之研究配置圖 55
圖3-6 高相對濕度實驗配置圖 56
圖3-7 分開串聯實驗配置圖 57
圖3-8 三管串聯實驗配置圖 58
圖3-9 混合槽停留時間影響之研究配置圖 59
圖3-10 低相對濕度實驗配置圖 60
圖3-11 O3影響之研究配置圖 61
圖4-1 大氣相對濕度下NO2與HONO干擾生成量之關係 68
圖4-2 以新零基氣體為來源之串連兩管HONO干擾濃度分佈情形 68
圖4-3 串連兩管之進氣NO2濃度與HONO生成之關係 69
圖4-4 以舊零基氣體為來源之串連HONO干擾濃度分佈 69
圖4-5 NO2進氣濃度與HONO干擾生成之關係(舊零基氣體) 70
圖4-6 以新零基氣體為來源之串連三管HONO干擾濃度分佈 70
圖4-7 比較串連三管採樣之HONO干擾生成趨勢 71
圖4-8 去除soot條件下串聯兩管之HONO生成分佈情形 75
圖4-9 去除soot條件下NO2進氣濃度與HONO干擾生成之關係 76
圖4-10 濾紙與Denuder採集NO2氣體結果之比較 76
圖4-11 採樣管於混合槽前後端量測HONO干擾結果之比較 77
圖4-12 混合槽內HONO生成濃度趨勢圖 77
圖4-13 HONO於混合槽生成量占總生成量之比例趨勢圖 78
圖4-14 於各個NO2濃度下串聯空管系統之HONO濃度分佈情形 78
圖4-15 於各個NO2濃度下串聯空管系統之HNO3濃度分佈情形 79
圖4-16 三管生成HONO、HNO3總量之比較 79
圖4-17 不同採樣時間對HONO累積干擾生成量之關係 82
圖4-18 採樣時間對HONO干擾生成濃度之影響 83
圖4-19 各NO2濃度下,採樣流量影響HONO生成之影響情形 83
圖4-20 各NO2濃度下,採樣流量影響HNO3生成之影響情形 84
圖4-21 不同相對濕度下,NO2進氣濃度和HONO干擾生成量之關係 87
圖4-22 O3對於HONO干擾生成之影響 88
圖4-23 O3對於HNO3干擾生成之影響 88
圖4-24 O3對於HNO2、HNO3干擾生成總和之影響 89
圖4-25 流量10 lpm、37ppbv NO2進氣濃度下,O3對干擾生成之影響 89
圖4-26 亞硝酸根與硫酸根之相對生成量比較 90
圖4-27 比較新舊零基氣體產生器產生HONO干擾之效果 90
圖4-28 各NO2濃度相對Na2CO3串聯三管HONO濃度分佈情形 94
圖4-29 Na2CO3採樣管之前端NO2濃度與HONO干擾生成之關係 95
圖4-30 串聯三管實驗中甲酸與HONO生成量關係 95
圖4-31 串聯空管實驗中甲酸與HONO生成量關係 96
圖4-32 串聯空管實驗中甲酸與HNO3生成量關係 96
圖4-33 塗敷Na2CO3採樣管實驗中甲酸與HONO生成量之關係 97
圖4-34 塗敷無甲醇溶液採樣管之NO2干擾HONO、HNO3情形 97
圖4-35 塗敷無甘油溶液採樣管之NO2干擾HONO、HNO3情形 98
圖4-36 塗敷添加H2O2溶液採樣管之NO2干擾HONO、HNO3情形 98
圖4-37 塗敷添加亞鐵溶液採樣管之NO2干擾HONO、HNO3情形 99
圖4-38 屏東測站於干擾修正前後之HONO日夜趨勢圖 108
圖4-39 89年大寮測站於干擾修正前後之HONO日夜趨勢圖 108
圖4-40 二林測站於干擾修正前後之HONO日夜趨勢圖 109
圖4-41 崙背測站於干擾修正前後之HONO日夜趨勢圖 109
圖4-42 安南測站於干擾修正前後之HONO日夜趨勢圖 110
圖4-43 楠梓測站於干擾修正前後之HONO日夜趨勢圖 110
圖4-44 大寮測站於干擾修正前後之HONO日夜趨勢圖 111
圖4-45 屏東站HONO干擾比值與NO2濃度日夜趨勢圖 111
圖4-46 89年大寮站HONO干擾比值與NO2濃度日夜趨勢圖 112
圖4-47 二林站HONO干擾比值與NO2濃度日夜趨勢圖 112
圖4-48 崙背站HONO干擾比值與NO2濃度日夜趨勢圖 113
圖4-49 安南站HONO干擾比值與NO2濃度日夜趨勢圖 113
圖4-50 楠梓站HONO干擾比值與NO2濃度日夜趨勢圖 114
圖4-51 大寮站HONO干擾比值與NO2濃度日夜趨勢圖 114
圖4-52 屏東站白天HONO干擾比值與NO2相關圖 115
圖4-53 屏東站夜間HONO干擾比值與NO2相關圖 115
圖4-54 大寮站89年白天HONO干擾比值與NO2相關圖 116
圖4-55 大寮站89年夜間HONO干擾比值與NO2相關圖 116
圖4-56 二林站白天HONO干擾比值與NO2相關圖 117
圖4-57 二林站夜間HONO干擾比值與NO2相關圖 117
圖4-58 崙背站白天HONO干擾比值與NO2相關圖 118
圖4-59 崙背站夜間HONO干擾比值與NO2相關圖 118
圖4-60 安南站白天HONO干擾比值與NO2相關圖 119
圖4-61 安南站夜間HONO干擾比值與NO2相關圖 119
圖4-62 楠梓站白天HONO干擾比值與NO2相關圖 120
圖4-63 楠梓站夜間HONO干擾比值與NO2相關圖 120
圖4-64 大寮站白天HONO干擾比值與NO2相關圖 121
圖4-65 大寮站夜間HONO干擾比值與NO2相關圖 121
Al-Abadleh, H. A., and V. H. Grassian (2000) “Heterogeneous Reaction of NO2 on Hexane Soot. ” J. Phys. Chem.,104:11926-11933.
Allegrini, I., F. D. Santis, V. D. Palo, A. Febo, C. Perrino, and M. Possanzini (1987) “Annular Denuder Method for Sampling Reactive Gases and Aerosols in the Atmosphere.” Sci. total. Envir.,67:1-16.
Ammann, M., M. Kalberer, D. T. Jost, L. Tobler, E. Rossler, D. Piguet, H. W. Gaggeler, and U. Saltensperger (1998) “Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses.” Nature., 395:157-160.
Andres-Hernandez, M. D., J. Hjotth, and O. Schrems (1996) “A DOAS Study on the Origin of Nitrous Acid at Urban and Non-urban Sites. ” Atmos.Environ., 30:175-180.
Apple, B. R., A. M. Winer, Y. Tokiwa, and H. W. Biermann (1990) “Comparison of Atmospheric Nitrous Acid Measurements by Annular Denuder and Differential Optical Absorption Systems.” Atmos.Environ., 24A:611-616.
Apple, B. R., Y. Tokiwa, E. L. Kothny, R. Wu, and V. Povard (1988) “Evaluation of Procedures for Measuring Atmospheric Nitric Acid and Ammonia.” Atmos. Environ., 11:1565-1573.
Atlas, E. L., B. A. Ridley, G. Hubler, J. G. Walega, M. A. Carroll, D. D. Montzka, B. J. Huebert, R. B. Norton, F. E. Grahek, and S. Schauffler (1992) “Partitining and Budget of NOy Species During the Maula Loa Observatory Photochemistry Experiment.” J. Geophy. Res.,97(D10):2927-2939.
Calvert, J. G., G. Yarwood, and A. M. Dunker (1994) “An Evaluation of the Mechanism of Nitrous Acid Formation in the Urban Atmosphere.” Res. Chem. Intermed.,20:463-502.
Chan, W. H., R. J. Nordstrom, J. G. Calvert, and J. H. Shaw (1976) “Kinetic Study of HONO-Formation and Decay Reactions in Gaseous Mixtures of HONO, NO, NO2, H2O and N2.” Envir. Sci. Technol.,10:674-682.
Cox, R. A., R. G. Derwent, and F. J. Sandalls (1976) “Some Air Pollution Measurements Made at Harwell, Oxforshire During 1973-1975. ” Area-report.,8324.
Durham, J. L., T. G. Ellestad, L. Stockburger, K. T. Knapp, and L. L. Spiller (1986) “A Transition-flow Reactor Tube for Measuring Trace Gas Concentrations” J. Air Pollut. Control. Assoc., 36:1228-1232.
England, E. and W. H. Corcoran (1975) “The Rate and Mechanism of the Air Oxidation of Part-per-million Concentrations of Nitric Acid in the Presence of Water Vapor.” Ind. Engng Chem. Fundam. 14:55-63
Finlayson-Pitts, B. J. Pitts, J. N. Atmospheric Chemistry “Fundamentals and Experimental Techniques.” Wiley : New York.
Febo, A., and C. Perrino (1991) “Prediction and Experimental Evidence for High Air Concentration of Nitrous Acid in Indoor Environments”. Atmos.Environ., 25A:1055-1061.
Febo, A., C. Perrino, and M. Cortiello (1992) “A Denuder Technique for the Measurement of Nitrous Acid in Urban Atmospheres.” Atmos. Environ. 27A:1721-1728.
Febo, A., F. Santis, and C. Perrino (1986) “Measurement of Atmospheric Nitrous and Nitric Acid by Means of Annuler Denuders ” Proc Fourth European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants, Stresa(Italy)23-25 Sept. Reidal, Dordrecht:121-125.
Febo, A., F. Santis, C. Perrino, and A. Liberti (1987) “The Study of the Reaction Between Nitrogen Oxides and Water Vapour by Means of Annular Denuder Tubes” In Tropospheric NOx Chemistry-Gas Phase and Multiphase Aspects:61-67.
Ferm, M., and A. Sjodin (1984) “A Sodium Carbonate Coated Denuder for Determination of Nitrous Acid in the Atmosphere.” Atmos.Environ., 19:979-983.
Forrest, J., D. J. Spandau, R. L. Tanner, and L. Newman (1982) “Determination of Atmospheric Nitrate and Nitric Acid Employing a Diffusion Denuder with a Filter Pack.” Atmos. Environ., 16:1473-1485.
Gerecke, A., A. Thielmann, L. Gutzwiller, and M. J. Rossi (1998) “The Chemical Kinetics of HONO Formation Resulting from Heterogeneous Interaction of NO2 with Flame Soot.” Geo-physival Research Letters 25:2453-2456.
Gormley, P. G., and M. Kennedy (1949) “Diffusion from a Stream Flowing Through a Cylindrical Tube.” Proc. R. Ir. Acad., 52:163-169.
Harris, G. W., A. M. Winer, J. N. Pitts, U. Platt, and D. Perner (1983) “Measurement of HONO, NO3 and NO2 by Long-path Differential Optical Absorption Spectroscopy in the Los Angeles Basin.” Optical Laser Remote Sensing 39:106-113.
Harris, G. W., W. P. L Carter, A.M. Winer, J.N. Pitts, Jr, U. Platt, and D. Perner (1982) “Observation of Nitrous Acid in the Los Angeles Atmosphere and the Implication for the Ozone-precursor Relationships.” Environ. Sci Technol.,16:414-419.
Harrison, R. M., and A-M. N. Kitto (1994) “Evidence for a Surface Source of Atmospheric Nitrous Acid.” Atmos.Environ., 28A:1089-1094.
Harrison, R. M., J. D. Peak, and G. M. Collins (1996) “Tropospheric Cycle of Nitrous Acid.” J. Geophys. Res., 101(D9):14429-14439.
Jenkin, M. E., R. A. Cox, and D. J. Williams (1988) “Laboratory Studies of the Kinetics of Formation of Nitrous Acid from Thermal Reaction of Nitrogen Dioxide and Water Vapor.” Atmos.Environ., 22:487-498.
Kalberer, M., M. Ammann, H. W. Gaggeler, U. Baltensperger (1999) “Adsorption of NO2 on Carbon Aerosol Particles in the Low ppb Range.” Atmos.Environ., 33:2815-2822.
Kleffmann, J., K. H. Becker, M. Lackhoff, and P. Wiesen (1999) “Heterogeneous Conversion of NO2 on Carbonaceous Surfaces.” Physical Chemistry and Chemical Physics, 1:5443-5450.
Kessler, C., O. Perner, and U. Platt (1981) “Spectroscopic Measurements of Nitrous Acid and Formaldehyde – Implications for Urban Photochemistry.” Commission of the European Communities, Cost-meeting Physico-chemical Behavior of Atmospheric Pollutants. Proc. 2nd European Symp., Varese 29 September-1 October.
Kessler, C., and U. Platt (1984) “Nitrous Acid in Polluted Air Masses: Sources and Formation Pathways.” in Proceedings of European Symposium on Physico-chemical Behavior of Atmospheric Pollutants, edited by B. Versino and G. Angeletti, D. Redel, Norwell, Mass.
Kotamarthi, V. R., J. S. Gaffney, N. A. Marley, and P. V. Doskey (2001) “Heterogeneous NOx Chemistry in the Polluted PBL.” Atmos.Environ., 35:4489-4498.
Lewin, E. E., and K. A. Hansen (1984) “Diffusion Denuder Assembly for Collection and Determination of Gases in Air.” Anal. Chem., 56:842-845.
Nash, T., “Nitrous Acid in the Atmosphere and Laboratory Experiments on Its Photolysis.” Tellus., 22:175-179.
Parrish, D. D., C. H. Hahn, D. W. Fahey, E. J. Willuams, M. J. Bollinger, G. Hubler, M. P. Buhr, P. C. Murphy, E. Y. Hsie, S. C. Liu, and F. C. Fehsenfeld (1990) “Systematic Variation in the Concentration of NOx (NO Plus NO2) at Niwot Ridge, Colorado. ” J. Geophys. Res., 95:1817-1936.
Parrish, D.D., M. P. Buhr, M. Trainer, R. B. Norton, J. P. Shimshock, F. C. Fehsenfeld, K. G. Anlauf, J. W. Bottenheim, Y. Z. Tang, H. A. Wiebe, J. M. Roberts, R. L. Tanner, L. Newman, V. C. Bowersox, K. J. Olszyna, E. M. Bailey, M. O. Rodgers, T. Wang, H. Berresheim, U. K. Roychowdhury, and K. L. Demerjian (1993) “The Total Reactive Oxidized Nitrogen Levels and the Partitioning Between the Individual Species at Six Rural Sites in Eastern North America.” J. Geophys. Res., 98:2927-2939.
Penket, S. A., F. J. Sandalls, and B. M. R. Jones (1977) “PAN Measurements in England-Analytical Methods and Results.” VDI-Ber., 270:47-54.
Perner O., and U. Platt (1979) “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption.” Geophys. Res. Lett., 6:917-920.
Perrino, C., F. D. Santis, and A. Febo (1990) “Criteria for the Choice of a Denuder Sampling Technique Devoted to the Measurement of Atmospheric Nitrous and Nitric Acids” Atmos. Environ., 24A:617-626.
Possanzini, M., A. Febo, and A. Liberti (1983) “New Design of a High Performance Denuder for the Sampling of Atmospheric Pollutants.” Atmos. Environ., 17:2605-2610.
Sakamaki, F., S. Hatkeyama, and H. Akimoto (1983) “Formation of Nitrous Acid and Nitric Oxide in the Heterogeneous Dark Reaction of Nitrogen Dioxide and Water Vapour in a Smog Chamber.” Int. J. chem. Kinet. 15:1013-1029.
Sjodin, A., (1988) “Studies of the Diurnal Variation of Nitrous Acid in Urban Area” Atmos.Environ., 22:1086-1089.
Sjodin, A. and M. Ferm (1985) “Measurements of Nitrous Acid in an Urban Area.” Atmos.Environ., 19:985-993.
Seinfeld, J. H., (1986) “Atmospheric Chemistry and Physics of Air Pollution”, John Wiley & Sons, Inc., pp.234.
Stelson, A. W., and J. H. Seinfeld (1982) “Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant.” Atmos. Environ., 16:983-992.
Svensson, R., E. Ljungstrom, and O. Lindquist (1987) “Kinetics of the Reaction Between Nitrogen Dioxide and Water Vapour.” Atmos.Environ., 21:1529-1539.
Tyndall, G. S., J. J. Orlando, and J. G. Calvert (1995) “Upper Limit for the Rate Coefficient for the Reaction HO2 + NO2 �_ HONO + O2.” Environ. Sci. Technol.,29:202-206.
Vecera Z., and P. K. Dasgupta (1991) “Measurement of Atmospheric Nitric and Nitrous Acids with a Wet Effluent Diffusion Denuder and Low-pressure Ion Chromatography-postcolumn Reaction Detection” Analyt. Chem., 63:2210-2216.
Williams, E. J., J. M. Roberts, K. Baumann, S. B. Bertman, S. Buhr, R. B. Norton, and F. C. Fehsenfeld (1997) “Variations in NOy Composition at Idaho Hill, Colorado.” J. Geophys. Res., 102(D5):6297-6314.
文恆毅(1996)“以環形擴散採樣器採集大氣中硝酸、亞硝酸、二氧化硫與氨氣濃度之採樣誤差探討”,碩士論文,國立交通大學環境工程研究所,新竹市。
徐玉眉、劉遵賢、鄭福田 (2000) 『大氣中氣態亞硝酸與硝酸之觀測研究』,第十七屆空氣污染控制技術研討會論文集
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top