(3.232.129.123) 您好!臺灣時間:2021/03/04 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴文亮
研究生(外文):Wen-Liang Lai
論文名稱:各種淨水程序對生物可分解有機質及消毒副產物之控制
論文名稱(外文):The Control of Biodegradable Organic Matter and Disinfection By-Product by Various Water Treatment Processes
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:219
中文關鍵詞:生物可分解之有機質再生長生物可利用之有機碳生物可分解之有機碳
外文關鍵詞:Assimilable organic carbonregrowthaftergrowthBiodegradable organic matterBiodegradable orga
相關次數:
  • 被引用被引用:22
  • 點閱點閱:739
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:234
  • 收藏至我的研究室書目清單書目收藏:0
若水中之生物可利用之有機碳 (Assimilable organic carbon, AOC) 或生物可分解之有機碳 (Biodegradable organic carbon, BDOC)未能在淨水處理過程中加以去除,則可能引起配水管網內異營性微生物之繁殖,而使水質惡化,此即一般所稱之「再生長(regrowth)」或「後生長(aftergrowth)」,故如何加強其在淨水廠之控制為一值得重視之課題。研究之初,先於實驗室建立生物可分解之有機質 (biodegradable organic matter, BOM)之分析方法,包含AOC-Total (AOC-P17+AOC-NOX)及BDOC,進而探討國內數個淨水廠原水中BOM之含量及實廠前加氯之傳統淨水程序對BOM及THM去除之影響。另影響配水管網系統中微生物滋生之參數,藉由統計軟體進行參數間之相關性分析。最後則在實驗室進行加強混凝配合加氯方式及模型廠中以四種不同淨水程序:(1)加強混凝、沉澱、無煙煤/矽砂濾床及後加氯 (2)快混、膠凝沉澱、無煙煤/矽砂濾床、後臭氧、流體化結晶軟化床、GAC床及氯接觸槽 (3)流程(1)出水,先進入MF處理去除微粒物質,再進NF膜處理 (4)前臭氧、膠凝沉澱、流體化結晶軟化床及NF膜,探討控制BOM及THM之最佳流程組合,以提供淨水廠未來實廠化操作之參考。
對於國內不同水源之AOC-Total/NPDOC比值均高於國外之研究結果,且以AOC-P17為主,其中國內優養化湖水之高AOC-Total/NPDOC比值應與水中藻數相關。而BDOC/NPDOC之比值則與國外之研究結果相近。至於實廠採前加氯者,混凝沉澱/矽砂濾床對COD去除率遠大於NPDOC去除率。至於部分清水中NPDOC之值高於原水者,其原因除前述原水中所存在之溶解性有機物以親水性佔多數,本不利於混凝去除外,另前加氯除促使部份疏水性有機物轉變為親水性外,及其可能破壞粒狀有機物,導致增加溶解性有機碳之含量,均是可能之原因。在消毒副產物部分,預氯將延長氯與有機物之接觸時間,使消毒副產物濃度在後續淨水單元有逐漸增加之趨勢。在相當之NPDOC值下,溴離子含量高者,總三鹵甲烷之生成量亦高,且其中含溴物種所佔比例也隨之增加。在生物可分解有機質部分,清水之AOC-NOX及BDOC值均高於原水,而原水耗氯量增加時,清水中之AOC-NOX/NPDOC值與親水性有機物含量亦隨之增加,此與加氯將水中有機物轉換為羧酸類基質相關。在WST、SS及KS三配水管網系統之研究結果顯示,自由餘氯對HPC之抑制會受清水中之高AOC值所干擾。
在實驗室部分,依加強混凝、加強混凝後加氯及前加氯加強混凝等程序討論其對水中AOC、BDOC、NPDOC及THM去除結果顯示,前後加氯均可使水中AOC-NOX值高於原水,加氯配合加強混凝者,其出水之BDOC值均高於僅採加強混凝者。在耗氯量部分,在相同之反應時間比較時,原水採前加氯混凝者均高於加強混凝後加氯,此應是加強混凝可去除耗氯量大之疏水性有機物所致。在NPDOC及溴離子接近之原水,疏水性有機物高者,其前加氯形成CHCl3佔TTHM之莫耳百分比會高於低疏水性有機物者;反之,含溴之THM佔TTHM之百分比,高親水性有機物會高於低親水性有機物,甚至加強混凝後加氯形成含溴之THM佔TTHM之莫耳百分比也會隨之增加,此因疏水性有機物易與HOCl作用,而水中溴離子經加氯後形成之HOBr易與親水性有機物作用所致。
在模型廠中之研究結果顯示,原水經低劑量前臭氧氧化後,其出水之AOC-P17及AOC-NOX之值均較原水為低,然在高前臭氧劑量時,兩種AOC值均較原水增加,而後臭氧部分,無論高及低臭氧劑量,出水之AOC值以AOC-NOX為主,此與實驗室進行臭氧與原水及其經0.45 mm濾膜之濾液分別作用得到之結果相近,印證實廠前後臭氧導致兩種AOC值分佈之差異性應與水中存在之藻體相關。至於NF薄膜對AOC-P17之去除,其與進流水中硬度值相關,當進流水水中鈣、鎂等兩價陽離子濃度低時,可減少其對薄膜表面負電荷之遮蔽作用,故可增進薄膜與帶負電有機物間之斥力,可增加NF對AOC-P17值之去除。對於AOC及THM值之控制,採前加氯之傳統淨水程序及取消前加氯之加強混凝均無法有效降低AOC及THM值,尤其在AOC部分。採無煙煤/矽砂濾床配合臭氧活性碳或薄膜程序之效果均較未採濾床配合薄膜程序者為佳,且無煙煤/矽砂濾床配合臭氧活性碳或薄膜程序出水之AOC值除很接近或低於生物穩定性水質外,而THM平均值亦可控制低於5 mg/L。
If biodegradable organic matter (BOM) in the water is not effectively removed by water treatment processes, it might result in the growth of microorganisms in the distribution system, which is called regrowth or aftergrowth. Therefore, it is an important challenge for the water treatment plant to search an effective way to control the BOM. Earlier in this research, the analytical methods regarding the BOM, i.e. assimilable organic carbon (AOC) or biodegradable organic carbon (BDOC), and characteristic of organic mater in source water were established. Then, these techniques were used not only to understand the biodegradability of source waters and the characteristics of their organic matter, but also to evaluate their variations through conventional treatment processes with prechlorination. The THM formation was also monitored. Additionally, the correlations between various water quality parameters and heterotrophic plate count (HPC) in the distribution systems were also analyzed by statistical software. Furthermore, for searching the optimal processes for controlling AOC, BDOC and THM, both lab- and pilot-scale studies were conducted. In lab-scale studies, enhanced coagulation followed by postchlorination, enhanced coagulation only, and coagulation preceded by chlorination were compared. Regarding the pilot-scale studies, four processes were compared, namely, (1)enhanced coagulation/sedimentation/filtration, (2) conventional coagulation/sedimentation/ filtration /postoznation/ pellet softening/GAC/post chlorination, (3) enhanced coagulation/sedimentation/filtration /MF/NF and (4) Preozonation/conventional coagulation/sedimentation/ pellet softening/NF.
The ratios of AOC-Total/NPDOC in source waters from this study were higher than the values found in the literature, especially for eutrophic lakes abroad. Also, the AOC-Total in the source waters from eutrophic lakes was mainly contributed by AOC-P17. It had been demonstrated that high AOC-Total/NPDOC value in domestic source waters was due to high algal oncentration, after comparing the AOC value between source water and its filtrate through 0.45 μm membrane filter. However, the ratio of BDOC/NPDOC of source waters was similar to those in the literature.
For full-scale plants with conventional process following chlorination, it showed that COD removal was higher than NPDOC removal. Occasionally, the NPDOC in finished water was even higher than that in source water. Two possible explanations for these: (1) high hydrophilic organic fraction, which is not subject to coagulation removal, was existed in source waters and (2) prechlorination probably transferred hydrophobic organic into hydrophilic. For disinfection by-product formation, prechlorination prolonged the contact time between chlorine and organic matter, and resulted in high TTHM concentration in treated water. With comparable NPDOC value, both TTHM concentrations and the portion contributed by brominated THM species apparently were increased with bromide concentration in source water. Regarding the variation of BOM, it showed that the AOC-NOX and BDOC in finished water were higher than those in source water. Furthermore, both AOC-NOX/NPDOC ratio and hydrophilic fraction in finished water increased with chlorine consumption. These observations indicate that chlorine could transfer organic in source water into carboxylic acids, which were the favorite substrate for strain NOX. From the field study in three distribution systems, it showed that for water with high AOC value, regrowth of heterotrophic bacteria could not be achieved by maintaining chlorine residual at about 1.5 mg/l.
For lab-scale tests, three processes, namely enhanced coagulation/postchlorination, enhanced coagulation only, and prechlorination/enhanced coagulation, were selected to evaluate their effects on the removal of AOC, BDOC, NPDOC and THM. Based on the results, the BDOC value after enhanced coagulation with pre- or postchlorination was higher than that after enhanced coagulation only. For processes including chlorination, the AOC-NOX value of the finished water was always higher than that of the raw waters. Furthermore, the chlorine consumption of the process with prechlorination was higher than that of the process with enhanced coagulation and postchlorination with the same chlorine contact time. This could be attributed to the effective removal of hydrophobic organic during enhanced coagulation. For source waters with approximately equivalent NPDOC and bromide concentrations, those with higher percentage of hydrophobic organic in their NPDOC had higher CHCl3 mole fraction in their TTHM. Furthermore, the mole fraction of bromide-containing THM species in TTHM in the enhanced coagulation/postchlorination treated water was also higher than those from direct chlorination. Those observations can be explained by the preference of reaction between HOCl and hydrophobic organic, and between HOBr and hydrophilic organic.
From pilot plant study, it found that at preozonation both AOC-P17 and AOC-NOX values decreased at low ozone dosage, however, both could be higher than those of the source water at high ozone dosage. However, the AOC of the postozonated water was always dominant by AOC-NOX. This discrepancy in AOC-P17 and AOC-NOX variation resulted from preozonation and postozonation can be explained by whether ozone reacted with algae or not.Concerning the effect of hardness on AOC rejection by NF, the results from pilot testing showed that NF feed water with low hardness had higher AOC removal than that with high hardness. The explanation is low hardness with its low concentration of Ca and Mg ions, has low shielding effect between the negatively charged membrane surface and the negatively charged organics, and therefore high repulsion and high rejection. Also, it showed that either enhanced coagulation followed by dual-media filter or prechlorination followed by conventional processes could not effectively control AOC. For achieving biostability, either dual-media filter followed by ozone/GAC or dual-media filter followed by membrane processes was superior to NF alone.
目 錄
摘要 I
Abstract IV
誌謝 VIII
目錄 IX
表目錄 IX
圖目錄 XI

第一章 緒言 1
1-1 研究緣起 1
1-2 研究目的及內容 3

第二章 文獻回顧 6
2-1 自然水體中有機物之分類及其性質 6
2-1-1有機物之分類及其性質 6
2-1-2原水中有機物質之替代參數 8
2-2配水管網水質之生物穩定性問題 9
2-3 配水管網微生物後生長之影響因子及控制方法 10
2-4 水中生物可分解有機質 (biodegradable organic matter, BOM)之測定 12
2-4-1 AOC (Assimilable organic carbon) 12
2-4-2 BDOC (Biodegradable organic matter) 18
2-4-3 AOC及BDOC之應用及其與有機物參數之相關性 21
2-5 配水管網中各項水質參數與BOM對後生長之影響 25
2-5-1 水流距離、管徑與管材 25
2-5-2 餘氯、BOM及其它水質參數 26
2-5-3 處理程序 27
2-6 淨水單元對BOM去除之影響 29
2-6-1 傳統處理程序 29
2-6-2 臭氧或加氯處理 30
2-6-3 生物濾床 33
2-6-3-1 BOM在生物濾床被微生物利用之模式 33
2-6-3-2 EBCT 35
2-6-3-3 水溫 37
2-6-3-4 O3/DOC之比值 38
2-6-3-5 濾床之種類 39
2-6-4 薄膜對BOM之影響 39


2-7消毒副產物形成化學 41
2-7-1溴離子、有機物及氯量 43
2-7-2 pH、反應時間及溫度 45
2-8消毒副產物之控制及加強混凝 46
2-8-1消毒副產物之控制 46
2-8-2加強混凝 48


第三章 實驗程序、材料及方法 53
3-1 研究流程之規劃 53
3-2淨水處理廠之處理流程 53
3-2-1 KS淨水廠 57
3-2-2 CCL淨水廠 57
3-2-3 FS淨水廠 58
3-2-4 KT淨水廠 59
3-2-5 WKY淨水廠 60
3-2-6 SS淨水廠 61
3-2-7 WST淨水廠 61
3-2-8 CK淨水廠 62
3-2-9 Xian港西淨水廠 63
3-3 AOC之分析 63
3-3-1 純菌菌液的預先培養(Precultures) 63
3-3-1-1 前培養基及LLA培養基之配製 63
3-3-1-2 預先培養 66
3-3-2 確定菌種之純度 (Strain purity & identity) 66
3-3-2-1 Oxidase reaction 之檢驗 66
3-3-2-2 氧化與發酵檢驗(Oxidation and Fermentation Test) 67
3-3-2-3 Arginine Dehydrolase反應(ADH-基質) 68
3-3-2-4 R2A-基質 68
3-3-3 清洗採樣瓶及玻璃吸量管 70
3-3-4 試驗菌種生長曲線及產率的求得 70
3-4 BDOC之分析 71
3-3-1 採樣瓶處理 71
3-3-2 採樣分析 71
3-5 疏水性及親水性有機物之分析 77
3-5-1 樹脂之清洗 77
3-5-2 水樣之前處理、濃縮及分離 70

3-6 總三鹵甲烷(Total trihalomethane, TTHMs)之分析 79
3-6-1 採樣瓶處理 79
3-6-2 採樣及分析 79
3-7 鹵化醋酸產物( Haloacetic Acids, HAA)之測定 80
3-7-1 採樣瓶處理 80
3-7-2 採樣及分析 80
3-8 非揮發性溶解性有機碳(Non-Purgable Dissolved Organic Carbon, NPDOC)之分析定 86
3-9 溴離子之分析 86
3-10臭氧之分析 87
3-10-1臭氧產生量 87
3-10-2氣相中臭氧之測定 89
3-10-3液相中臭氧之測定 89

第四章 原水中有機物性質及前加氯之傳統處理程序對清水中BOM及消毒副產物之影響 91
4-1 研究動機 91
4-2各水廠水源中有機物性質之比較 91
4-3 前加氯對水中生物可分解性有機質及消毒副產物在傳統淨水程序之影響 108
4-3-1 一般有機物參數 108
4-3-2 BOM 112
4-3-3 消毒副產物 119

第五章 配水管網系統水質之生物穩定性 127
5-1 研究動機 127
5-2 配水管網系統 128
5-3水質參數間之相關性分析 131
5-3-1自由餘氯量與採樣點距淨水廠之距離 131
5-3-2 NPDOC、AOC-Total、AOC-P17與AOC-NOX 131
5-3-3水溫、AOC-P17與水中自由餘氯對HPC之影響 138
5-4 HPC預測模式中參數之敏感度分析 138

第六章 加強混凝配合加氯方式對BOM及消毒副產物之控制 143
6-1 研究動機 143

6-2水源之選擇 143
6-3加強混凝、前氯加強混凝及加強混凝後加氯對BOM之去除 145
6-3-1基本水質之比較 145
6-3-2加強混凝、前氯加強混凝及加強混凝後加氯之實驗步驟 .149
6-3-3加強混凝、前氯加強混凝及加強混凝後加氯對BOM去除之影響152
6-3-3-1加強混凝 152
6-3-3-2前氯加強混凝 154
6-3-3-3加強混凝後加氯 156
6-4前氯混凝及加強混凝後加氯對消毒副產物之影響 156
6-4-1原水水質參數 159
6-4-2不同水質對最佳混凝劑量之影響 159
6-4-3水質對氯消耗量之影響 161
6-4-4有機物性質及溴離子對加強混凝控制THM之影響 163

第七章 高級淨水程序對BOM及消毒副產物之控制 169
7-1 研究動機 169
7-2 模型廠之處理流程及單元規格 170
7-2-1 混凝沉澱 170
7-2-2 快濾床 172
7-2-3 GAC床 172
7-2-4 臭氧接觸槽 172
7-2-5 結晶軟化系統 (FBC)設備 173
7-2-6 薄膜硬體設備 173
7-3 模型廠取消前加氯與實廠前加氯之傳統淨水程序對BOM之去除 174
7-4 臭氧及活性碳對BOM之去除 176
7-4-1 前臭氧 176
7-4-2 後臭氧 182
7-5 結晶軟化程序對NF去除AOC及NPDOC之影響 186
7-6 CCL模型廠不同處理程序與CCL實廠清水水質穩定性之比較 188

第八章 結論與建議 194
8-1 結論 194
8-2 建議 194

參考文獻 198
附 錄A 214
自 述 216
Albidress, L., Horwedel, J., Hill, G., Borchardt, J. and Price, D. (1995) “ Effect of Ozone on Biodegradable Dissolved Carbon and Heterotrophic Plate Counts in the Distribution System”, Ozone Sci. & Engi., 17:283-295
Amon, R.M.W. and Benner, R. (1996) “Bacterial Utilization of Different Size Classes of Dissolved Organic Matter “, Limmol. Oceanogr., 41:41-51
Amy, G., and Debroux, J. (1998) "National Organic Matter (NOM) in Watersheds." in The Panel Discussion of The 4th International Workshop on Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan, ROC.
Amy, G.L., Tan.L. and Davis, M.K. (1991) “The Effects of Ozonation and Activated Carbon Adsorption on Trihalomethane Speciation”, Wat.Res., 25(2):191-
APHA, AWWA, WQF. Standard Methods for the Examination of Water and Wastewater, 19th edition 1995.
AWWA RF (1994) Survey of bromide in drinking water and impacts on DBP formation, AWWA Research Foundation and American Water Works Association, Denver, CO
AWWARF (1990) Assessing and Controlling Bacterial Regrowth in Distribution Systems, AWWA Research Foundation and American Water Works Association, Denver, CO.
AWWARF (1993a) Characterization of Natural Organic Matter and Its Relationship to Treatability, AWWA Research Foundation and American Water Works Association, Denver, CO
AWWARF (1993b) Assimilable Organic Carbon Measurement Techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.
AWWARF (1996) Measurement Of Biodegradable Organic Matter With Biofilm Reactors, AWWA Research Foundation and American Water Works Association, Denver, CO
AWWARF (1998) Microbial impact of Biological filtration, AWWA Research Foundation and American Water Works Association, Denver, CO
Bouwer, E. J. and Crowe, P. B. (1988) “Biological Processes in Drinking Water Treatment”, Jour. AWWA., 80(9):82-93.
Boyce, S. D. and Hornig J. F. (1983) “Reaction Pathways of Trihalomethane Formation from the Halogenation of Dihydroxy Aromatic Model Compounds for Humic Acid”, Environ. Sci & Technol., 17(4):.202-210.
Bradford, S.M., Palmer, C.J. and Olson, B.H. (1994) “ Assimilable Organic Carbon Concentration in Southern California Surface and Groundwater”, Wat.Res., 28(2):427-435.
Charnock, C. and Kjønnø, O. (2000) “Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon in Norwegian Raw and Drinking Waters”, Wat. Res., 34(10):2629-2642.
Chen, P.H. (1997) “Adsorption of Organic Compound in Water Using a Synthetic Adsorbent”, Environment International., 23:63-73.
Christman, R.F., Norwood, D. L., Seo, Y. and Frimmel F.H. (1989) “Oxidative Degradation of Humic Substance from Freshwater Environmentals”, Humuic Substance II in Search of Structure, M.H.B. Hayes, P. MacCarthy, & R.L. Malcolm, eds., John Wiley & Sons, Chichester.
Chróst, R.J. (1989) “Characterization and Significant of β-Glucosidase Acitivity in Lake Water”, Limnol. Oceanogr., 34 (4):660-672.
Chróst, R.J. Munster, U., Rai, H., Albrecht, D., Witzel, K. and Overbeck, J. (1989) “Photosynthetic Production and Exoenzymatic Degradation of Organic Matter in the Euphotic Zone of a Eutrophilic Lake”, Journal of Plankton research., 11(2):223-242.
Cipparone, L.A., Diehl, A.C. and Speitel Jr, G.E. (1997) “Ozoantion and BDOC Removal: Effect on Water Quality”, Jour. AWWA,89(2):84-97.
Cipparone, L.A., Diehl, A.C. and Speitel Jr, G.E. (1997) “Ozoantion and BDOC Removal: Effect on Water Quality”, Jour. AWWA, 89(2):.84-97.
Cipparone, L.C., Diehl, A.C. and Speitel Jr., G.E. (1997) “Ozonation and BDOC Removal: Effect on Water Quality”, Jour.AWWA, 89(2):84-97.
Clark, R.M., Lykin, B.W., Block, J.C., WymerL.J. and Reasoner, D.J. (1994) “Water Quality Changes in Simulated Distribution”, J Water SRT-Aqua., 43(6):263-277.
Collins, M.R., Amy, G. L., and Steelink, C. (1986) "Molecular Weight Distribution,Carboxylic Acidity, and Humic Substances Content of Aquatic Organic Matter: Implications for Removal During Water Treatment, Environ. Sci..Technol., 20(10):1028-1032.
Committee Report (1979) "Organics Removal by Coagulation : A Review and Research Needs," Jour. AWWA, 71(10):588-603.
Cowman, G.A. and Singer, P.C. (1996) Effect of Bromide ion on Haloacetic Acid Speciation Resulting From Chlorination and Chloramination of Aquatic Humic Substance, Environ. Sci. Technol., 30(1):16-24.
Croué, J.P., Viollean, D. and Labouyrite, L. (2000) “Disinfection By-Product Formation Potentials of Hydrophobic and Hydrophilic Natural Organic Matter Fraction: A Comparison between a Low- and High-Humic Water”, Natural Organic Matter and Disinfection By-Products, Sylvia E. Barrett, Stuart W. Krasner, and Gary L.Amy, eds., ACS, Washington, DC.
Crozes,G., white,P. and Marshall,M. (1995) “Enhanced Coagulation: Its Effect on NOM Removal and Chemical Costs”, Jour.AWWA, 87(1):78-89.
Edwards, G.A. and Amirtharajah, A. (1985) “Removing Color Caused by Humic Acids”, Jour.AWWA, 77(3):50-57.
Edzwald, J.K. and Paralkar, A. (1992)“Algae, Coagulation and Ozonation. In:Chemical Water and Wastewater Treatment II, R. Klute and H. Halm Eds., Springer-Verlag, New York.
Edwald, J.K. (1994) “Coagulation Concepts for Removal of TOC.In Proc. AWWA WQTC Conf., San Fransico, CA (Nov. 6-10)
Escobar, I.C. and Randall,A.A. (2000) “Sample Storage Impact on The Assimilable Organic Carbon (AOC) and Biostability”, Wat. Res.,34(5):1680-1686.
Escobar, I.C., Hong, S. and Randall, A.A. (2000) “Removal of Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon by Reverse Osmosis and Nanofiltration Membrane”, Journal of Membrane Science, 175:1-17.
Frias, J., Ribas, F. and Luchena, F. (1992) “ A Method for the Measurement of Biodegradable Organic Carbon in Water”, Wat.Res., 26(2):255-258.
Geldreich, E.E. (1996) “Biofilms in Water Distribution systems”, Microbial Quality of Water Supply in Distribution System, Lewis publisher, Boca Raton, Florida.
Gibbs, R.A., Scutt, J.E., and Croll, B.T., (1993), “ Assimilable Organic Carbon Concentrations and Bacterial Numbers in a Water Distribution”, Wat. Sci. Tech., 27(3-4):159-166.
Heller-Grossman LH, Manka J. Relis BL. and Rebhum M.(1993) “Formation and Distribution of Haloacetic Acid, THM and TOX in Chlorination of Bromide-Rich Lake Water’, Wat.Res., 27:1323-1331.
Hem, J.L. and Efraimsen, H. (1999)“ Isolation of Natural Organic Matter-The Influence on the Assimilable Organic Carbon”, Envirommental International, 25 (2/3):367-371.
Hu, J.Y., Wang, Z.S., NG, W.J. and Ong, S.L. (1999) “The Effect of Water Treatment Processes on The Biological Stability of Potable Water”, Wat.Res. 33 (11):2587-2592.
Huang, WJ, Yeh, HH. (1993) “Organic Fractionation for Water Treatment Processes Evaluation”, in Proceeding AWWA WQTC, Miam, FL., 257-272.
Huck, P. M. (1990) “Measurement of Biodegradable Organic Matter and Bacterial Growth Potential in Drinking Water” Jour. AWWA, 82(7):78-86.
Huck, P. M. Zhang, S. and Price, M.L.(1994) “BOM Removal during Biological Treatment :A Firstorder Model”, Jour. AWWA, 86(6):61-71.
Huck, P.M., Fedorak, P.M. and Anderson, W.B. (1991) “ Formation and Removal of Assimilable Organic Carbon during Biological Treatment ”, Jour. AWWA, 83(12):69-80.
Jacangelo, J. G., DeMarco, J., Owen, D.M.and Randtke, S.J. (1995) “Selected Processes for Removing NOM : An Overview”, Jour. AWWA, 87:64-77.
Janssens, J. G., Meheus, J. and Dirickx, J. (1985) “Ozone Enhanced Biologocal Activated Carbon Filtration and Its Effect on Organic Matter Removal and in Particular on AOC Reduction”, Wat. Sci. Tech.,17:1055-1068.
Kainulainen, T.K., Tuhkanen, T.K., Vartianinen, T.K. and Kalliokoski, P.J. (1995) “ Removal of Residual Organics from Drinking Water by Ozonation and Activated Carbon Filtration: A Pilot Plant Study”, Ozone Sci. & Tech., 17:449-462.
Kaplan, L.A. and Bott, T.L. (!983) “Microbial Heterotrophic Utilization of Dissolved Organic Matter in a Piedmont Stream”, Freshwater Biology, 13:363-377,
Kemmy, F.A., Fry, J.C. and Breach, R.A. (1989) “Development and Operational Implementation of a Modified and Simplified Method for Determination of Assimilable Organic Carbon (AOC) in Drinking Water”, Wat. Sci. Tech. , 21(3):155-159.
Kim, W.H., Nishijima, W., Baes, A.U. and Okada, M. (1997) “Micropollutant Removal Removal with Saturated Biological Activated Carbon (BAC) in Ozonation-BAC Process”, Wat. Sci. Tech., 36(12):283-298.
Kleven, C.M., Collins, M.R>, Negm, R. and Farrar, M.F. (1996) “Characterization of NOM Removal by Biological Activated Carbon”, Advances in Slow and Alternative Biological Filtration, N. Graham and R. Collins, eds., John Wiley & Sons., Jin Xing Distripark, Singapore.
Krasner, S.W. (1999) ”Chemistry of Disinfection By-Product Formation”, Formation and Control of Disinfection By-Product, Philip C. Singer, ed., AWWA, Denver, CO.
Krasner, S.W., McGuire, M.J., Jacangelo, J.G., Patania, N.L., Reagan, K.M and Aieta, E.M. (1989) ”The Occurrence of Disinfection By-Products in US Drinking Water”, Jour. AWWA, 81:41-53.
Krasner, S.W., Sclimenti, M.J. and Coffey, B.M. (1993) “Testing Biologically Active Filters for Removing Aldehydes Formed during Ozonation”, Jour.AWWA, 85(5):.62-71.
Krasner, S.W., Sclimenti, M.J., Chinn, R., Chowdhury, Z.K. and Owen, D.M. (1995)” The Impact of TOC and Bromide on Chlorination ByProduct Formation” in Disinfection By-Products in water Ttreatment, Roger A. Minear and Gary L. Amy, eds., Boca Raton, Florida, Lewis.
Krasner, S.W., Sclimimenti, M.J.and Means, E.G. (1994) “Quality Degradation : Implication for DBP Formation”, Jour.AWWA, 86(6):34-47.
Krasner,S.W., McGuire,M.J., Jacangelo, J.G., Patania, N.L., Reagan, K.M. and Aieta, E.M. (1989) “The Occurrence of Disinfection By-Products in US Drinking Water”, Jour.AWWA, 81(8):41-53.
Langlais, B., Reckhow, D. A., and Brink, D. R. (1991) “Practical Application of Ozone”, Ozone In Water Treatment : Application and Engineering.” AWWA RF and Lewis Publishers, Chelsea, Michigan.
LeChevallier, M. W. (1990) “Coliform Regrowth in Drinking Water: A Review”, Jour. AWWA, 82(11):74-86.
LeChevallier, M.W. (1999)“ The Case for Maintaining a Disinfectant Residual”, .Jour. AWWA, 91(1):86-94..
LeChevallier, M.W., Babcock, T.M. and Lee, R.G. (1987) : Examination and Characterization of Distribution System Biofilms”, Appl. Envir. Microbiology, 53(12):2714-2724.
LeChevallier, M.W., Becker, W.C., Schorr, P. and Lee, R.G. (1992) “Evaluating the Performance of Biologically Active Rapid Filters”, Jour.AWWA, 84(4):136-146.
LeChevallier, M.W., Schulz, W. and Lee, R.G. (1991) “ Bacteria Nutrient in Drinking Water”, Appl. Envir. Microbiology, 57(3):857-862.
LeChevallier, M.W., Welch, N.J. and Smith, D.B. (1996) “Full-Scale Studies of Factors Related to Coliform Regrowth in Drinking Water”, Appl. Envir. Microbiology, 62(7):2201-2211.
Lee, S.H., O’Connor, J.T. and Banerji, S.K. (1980) “Biologically Mediated Corrosion and Its Effects on Water Quality in Distribution Systems”, Jour. AWWA, 72(11):636-645.
Leenheer, J.A. (1981) “Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewaters”, Environ.Sci. Tech., 15(5):578-587.
Levy, R.V., Cheetham, R.D., Davis, J., Winer, G. and Hart, F.L. (1984) “Novel Method for Studying the Public Health Significance of Macroinvertebrates Occurring in Potable Water”, Appl. Envir. Microbiology, 47(5):889-894.
Levy, R.V., Hart, F.L. and Cheetham, R.D. (1986) “ Occurrence and Public Health Significance of Invertebrates in Drinking Water Systems”, Jour.AWWA.,78 (9):105-110.
Lund, V. and Ormerod, K. (1995) “ The Influence of Disinfection Process on Biofilm Formation in Water Distrubution”, Wat. Res., 29(4):1013-1021.
Martin, R.S., Gates, W.H., Tobin, R.S., Grantham, D., Sumarah, R., Wolfe, P., and Forestall P., (1982), “ Factors Affecting Coliform Bacteria Growth in Distribution Systems ”, Jour. AWWA, 74(1):34-37.
McMeen, C.R. and Benjamin, M.M. (1997) “NOM Removal by Slow Sand Filtration Through Iron Oxide-Coated Olivine”, Jour.AWWA,89 (2):57-71.
Miltner, R.J., Shukairy, H.M. and Summers, R.S. (1992) “ Disinfection By-Product Formation and Control by Ozonation and Biotreatment”, Jour. AWWA, 84(11):53-62.
Morris, J.C. and Baum, B. (1978) “Precursors and Mechanisms of Haloform Formation in the Chlorination of Water Supplies”, in Water Chlorination: Environmental Impact and Health Effects, Vol.2. Ann Arbor, Mich:Ann Arbor Science.
Nawrocki, J. and Bilozor, S. (1997) “Brominated Oxidation By-Products in Drinking Water Treatment, J Water SRT-Aqau, 46(6):304-323.
Nishijima, W. and Okada, M. (1998) “Particle Separation as a Pretreatment of an Advanced Drinking Water Treatment Processes by Ozonation and Biological Activated Carbon”, Wat.Sci.Tech., 37(10):117-124.
Nnokes, C.J., Fenton, E., and Randall, C.J. (1999) “Modeling the Formation of Brominated Trihalomethanes in Chlorinated Drinking Waters”, Wat.Res., 33:3557-3568.
Nobel, P.A., Clark, D.L. and Olson, B.H. “Biological Stability of Groundwater”, Jour. AWWA., 88(5):87-96.
Orlandini, E., Kruithof, J. C., Van Der Hoek, J. P., Siebel, M. A. and Schippers, J. C. (1997). “Impact of Ozonation on Disinfection and Formation of Biodegradable Organic Matter and Bromate”, J Water SRT- Aqua, 46(1):20-30.
Owen, D.M., Amy, G.L., and Chowdhury, Z.K.(1993) Characterization of Natural Organic Matter and Its Relationship to Treatability, AWWA Res. Fdn., Denver, Colo.
Owen, D.M and Chowdhury, Z.K. “The Role of Surrogates for Natural Organic Matter in Water Treatment”, in Natural Organic Matter in Drinking Water :Origin, Characterization and Removal, September 19-22 1993, Chamonix, France, pp.115-125.
Pontius, F. W. (1993) "D-DBP Rule to Set Tight Standards," Jour. AWWA, 85 (11):22-30.
Pontius, F. W. (1997) "Expedited Microbial/Disinfection By-product Rules Defined", Jour. AWWA, 89(10):20-24.
PrèVost, M., Coallier, J., Mailly, J., Desjardins, R., And Duchesne, D., (1992), “Comparison of Biodegradable Organic Carbon (BDOC) Techniques for Process Control”, J. Water SRT-Aqua , 41(3):141-150.
Price, M., Bailery,R.W., Enos, A.K., Hook, M. and Hermanowicz, S.W. (1993)” Evaluating of Ozone/Biological Treatment for Disinfection Byproducts Control and Biologically Stable Water”, Ozone Sci. & Engi., 15:95-130.
Randtke, S. J. (1988) “Organic Contaminant Removal by Coagulation and Related Process Combination,” Jour. AWWA, 80 (5):40-50.
Randtke, S.J. (1999) ” Disinfection By-Product Precursor Removal by Coagulation and Softening”, in Formation and Control of Disinfection By-Product, Philip C. Singer, ed., AWWA, Denver, CO.
Randtke,S.J. (1993) “Coagulation of natural organic matter: An overview of the science and U.S. practice”, in Natural Organic Matter in Drinking Water :Origin, Characterization and Removal, September 19-22 1993, Chamonix, France, pp.155-164.
Reckhow, D.A., Singer, P.C., and Malcolm, R.L. (1990) “Chlorination of Humic Materials:ByProduct Formation and Chemical Interpretations”, Environ. Sci. & Tech., 24(11):1655-
Reckhow,D.A. and Singer, P.C. (1984) “The Removal of Organic Halide Precursors by Preozonztion and Alum Coagulation”, Jour.AWWA, 82(4):151-157.
Rehun, M., Manka, J.and Zilberman, A. (1988) “Trihalomethane Formation in High-Bromide Lake Calilee Water, Jour.AWWA, 79(6)::84-89.
Reilly, J.K. and Kippin, J.S. (1983) “ Relationship of bacterial count with Turbidity and free chlorine in two distribution system”, Jour. AWWA, 75(6):309-312.
Ribas, F., Frias, J., and Lucena, F. (1991) A New Dynamic Method for the Rapid Determination of Biodegradable Dissolved organic Carbon in Drinking Water” Jour. Appl. Bact. , 71:371-378.
Ribas, F., Frias, J., Huguet, J. M., and Lucena, F. (1997) “Efficiency of Various Water Treatment Process in the Removal of Biodegradable and Refractory Organic Matter”, Water Res., 31(3):639-649.
Rittmann, B. E. and Snoeyink, V. L. (1984) “Achieving Biologically Stable Drinking Water”, Jour. AWWA, 76(10):106-114.
Rook, J.J. (1974) “Formation of Haloforms during Chlorination of Natural Water”, Water Treatment Exam., 23(3):234-239.
Rook, J.J. (1977) “Chlorination Reaction of Fulvic Acids in Natural Water”, Environ. Sci. & Tech., 11(5):478-482.
Rook, J.J., Gras, A.A., Van der Heijden, B.G.and De Wee, J. (1970) “Bromide Oxidation and Organic Substitution in Taiwan Treatment”, Jour.Environ.Sci. Health, A13(2):91-116.
Schnitzer, R.W. (1976) “ The Chemistry of Humic of Substance”, Environmental Biogeochemistry, J.O. Nriagu, ed. Vol., Ann Arbor Science, Ann Arbor, MI.
Semmens, M. J. and Field, T. K. (1980) "Coagulation: Experiences in Organics Removal”, Jour. AWWA, 72(8):476-482
Semmens, M.J. and Ayers, K. (1985) “Removal by Coagulation of Trace Oganics from Mississippi river Water”, Jour. AWWA, 77 (5):79-84.
Servais, P., Anzil, A. and Ventresque, C. (1989) “Simple Method for Determination of Biodegradable Dissolved Organic Carbon in Water” , Appl. Envir. Microbiology, 55(10):2732-2734.
Servais, P., Billen, G. and HascoëT, M.C., (1987) “ Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters ”, Wat. Res., 21(4):445-450.
Servais, P., Billen, G., Bouillot, P. and Benezet, M. (1992)“A Pilot Study of Biological GAC Filtration in Drinking Water Treatment , Jour. Water SRT-Aqua.,41(3):163-168.
Servais, P., Billen, G., Ventresque,C. and Bablon, G.P. (1991), “Microbial Activity in GAC Filters at The Choisy-Le-Roi Treatment Plant”, Jour.AWWA, 83(2):62-68.
Servais, P., Laurent, P. and Randon, G. (1995)“Comparison of the Bacterial Dynamics in Various French Distribution System”, J Water SRT-Aqua., 44(1):10-17.
Singer, P.C. (1994) “Control of Disinfection By-Product in Drinking Water”, Jour. of Environ. Engi., 120(4):727-744.
Singer, P.C. and Chang, S.D. (1989) “Correlations between Trihalomethanes and Total Organic Halides Formed during Water Treatment”, Jour.AWWA, 81(8):61-65.
Singer, P.C., Obolensky, A. and Greiner,A. (1995) DBPs in Chlorinated North Carolina Drinking Waters, Jour.AWWA, 86(10):83-92.
Sinsabaugh Ⅲ, R. L., Hoehn, R.C., Knocke, W.R. and Linkins Ⅲ, A.E. (1986) “Removal of Dissolved Organic Carbon by Coagulation with Iron Sulfate”, Jour.AWWA,78(5):74-82.
Snoeyink, V.L. and Jenkins, D. (!985) “Coordination Chemistry”, Chap.5 in Water Chemistry, Ann Arbor Science Press. Ann Arbor MI.
Stephenson, R.J. and Duff, S,J.B. (1996) “Coagulation and precipitation of a Mechanical Pulping Effluent-II. Toxicity Removal and Metal Salt Recovery”, Wat. Res., 30(4):793-798.
Steven, A.A., Slocum, C.J., Seeger, D.R. and Robeck, G.G. (1976) “ Chlorination of Organic Drinking Water”, Jour.AWWA, 87(10):83
Steven.A.A., Moore, L.A. and Miltner, R.J. (1989) Formation and Control of Non-Trihalomethane Disinfection By-Products, Jour.AWWA, 81(8):54-60.
Swertfeger, J.W., Summer, R.S., Miltner, R.J., Rice, E.W., Dryfuse, M.J. and Nolan,S.A. (1993) “The Control of Ozonation By-Products by Biologically Filtration”, Proceedings Annual Conference, June 6-10, 1993, San Antonio, Texas, pp.831-856.
Symons, J.M, Krasner,S.W., Simms,L.A. and Sclimenti,M. (1993) Measurement of THM and Precursor Concentrations Revisited :the Effect of Bromide ion, Jour.AWWA, 85(1):51-62.
Symons,J.M., Worley, K.L. (1995) “An Advanced Oxidation Process for DBP Control”, Jour. AWWA;87:66-75
Te Welscher, R.A.G., Schellart, J.A. and de Visser, P.M. (1998) “Experience with Fifteen Year of Drinking water Distribution without a Chlorine Residual”, specialized Conference on Drinking Water Distribution with or without Disinfectant Residual, 28-30 Sep. 1998, Mülheim an der Ruhr, Germany , pp.XIX-1-XIX8.
Thurman, E. M. (1985) “ Amount of Organic Carbon in Natural Water”, in Organic Geochemistry of Nature Water, Martinus Nijhoff╱Dr. W. Junk Publishers, Dordrecht, the Netherlands, pp.15-17.
Thurman, E.M. and Malcolm, R.L. (1981) “Preparative Isolation of Aquatic Humic Substance”, Environ. Sci. Technol., 15:5, 463-466.
Tobison, J.E., Edzwald, J.K., Reckhow, D.A. and Switzenbaum, M.S. (1993) Effect of Preozonation on Organics Removal by In-Line Direct Filtration, Wat.Sci.Tech., 27(11):81-90.
USEPA (1993.) Guidance Manual for enhanced coagulation and enhanced precipitative softening, chapter 3 in D/DBP precursor removal processes.
USEPA(2001) “ Risk-Based Concentration Table, USEPA, Region III 841Chestnut Street, Philadelphia, PA
Vahala, R., Ala-Perijari, T., Rintala, J. and Laukkanen, R. (1998) “ Evaluating Ozone Dose for AOC Removal in Two-Step GAC Filter”, Wat.Sci.Tech. 37(9):113-120..
Van Der Kooij D. (1995)“Significance and Assessment of The Biological Stability of Drinking Water”, The Handbook of Environmental Chemistry. J. Hrubec, Vol.5, ed., Springer-Verlag, Berlin, Germany. 89-102.
Van der Kooij, D. & Veenendaal, H.R., (1992) “ Assessment of the Biofilm Formation Characteristics of Dringking Water ”, Proc. AWWA WQTC, Toronto, Outario, No.15-19, pp.1099-1110.
Van Der Kooij, D. & Veenendaal, H.R., (1995), Determination Of The Concentration Of Easily Assimilable Organic Carbon (AOC) In Drinking Water With Growth Measurements Using Pure Bacterial Cultures , SWE 95.002, KIWA, Nieuwegein, Netherlands.
Van Der Kooij, D. (1990) “ Assimilable Organic Carbon (AOC) in Drinking Water”, in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
Van Der Kooij, D. (1992) “Assimilable Organic Carbon as an Indicator of Bacterial Regrowth”, Jour. AWWA, 84(2):57-65.
Van der Kooij, D. (1994) “The Unified Biofilm Approach”, KIWA Research and Consultancy.
Van der Kooij, D., and Hijnen, W.A.M. (1984) "Substrate Utilization by an Oxalate –Consuming Spirium species in Ralation to Its Regrowth in Ozonzted Water”, Appl. Envir. Microbiology, 47(3):51-559.
Van Der Kooij, D., Hijnen, W. A. M., and Kruithof, J. C. (1989) “The Effect of Ozonation, Biological Filtration and Distribution on The Concentration of Easily Assimilable Organic Carbon (AOC) in Drinking Water”, Ozone Sci. & Engi., 11:297-311.
Van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. and Hiemstra, P. (1999) “Distributing Drinking Water without Disinfectant Highest Achievement or Height of Folly?”, Jour. Water SRT-Aqua., 48(1):31-37.
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982) “Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water”, Jour. AWWA, 74(10):540-545.
Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G. and Lechevallier, M. (2000) “ Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water”, Wat. Res.,34(12):3247-3257.
Vrijenhoek, E.M., Childress, A.E., Elimelench, M., Tanaka, T.S. and Beuhler,M.D. (1998) “Removing Particles and THM Precursors by Enhanced Coagulation”, Jour.AWWA, 90(3):139-150.
Welté, B., and Montiel, A. (1996) “Removal of BDOC by Slow Sand Filtration:Comparison with Granular Activated Carbon and Effect of Temperature”, in Advance in Slow Sand and Alternative Biological Filtration., N. Graham & R. Collins, eds., John Wiley & Sons, Jin Xing Distripark, Singapore
White, M.C., Thompson,J.D., Harrington, G.W. and Singer, P.C. (1997) Evaluating Criteria for Enhanced Coagulation Compliance, Jour. AWWA, 89:64-77.
Wierenga, J.T. (1985) “Recovery of Coliforms in The Presence of Free Chlorine Residual”, Jour. AWWA, 77(11):83-88.
Yeh, H.H. and Lai, W.L. (2001) “The Application of Pellet Softening in Drinking Water Treatment-a Pilot Study”, the 7th International Workshop on Drinking Water Quality and Treatment Technology, Taipei, Taiwan, May 29-31, pp.7-1~7-8.
Zhang,A. and Huck, P.M. (1996 a) “Parameter Estimation for Biofilm Processes in Biological Water Treatment”, Wat. Res, 30 (2):456-464.
Zhang,A. and Huck, P.M. (1996 b) “Removal of AOC in Biological Water Treatment Processes: A Kinetic Modeling Approach”, Wat. Res., 30 (5):1195-1207.
黃文鑑 (1997) ”混凝、吸附對溶解性有機物去除及受預氯影響之研究”, 博士論文, 國立成功大學環境工程研究所, 台南.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔