跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林惠珍
研究生(外文):Huie-Jen Lin
論文名稱:不同馴養環境下之硝化動力行為
論文名稱(外文):Kinetic Behavior of Nitrification under DifferentAcclimatizing Environments
指導教授:黃汝賢黃汝賢引用關係
指導教授(外文):Ju-Sheng Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:101
中文關鍵詞:參數敏感度分析亞硝酸氮氧化菌分率模式驗證動力模式二段式硝化反應單段式硝化反應低氨氮濃度馴養環境one-stage CSTR系統two-stage CSTR系統
外文關鍵詞:one-stage CSTR systemtwo-stage CSTR systemacclimatizing environments with high and low ammone-step nitrificationtwo-step nitrificationkinetic modeldistributed fraction of nitratifiersmodel verificationparametric sensitivity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:571
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
使生物反應器動力模式更準確地用於預測反應器系統出流水質之主要關鍵在於求得可靠之生物動力參數值,而目前被廣泛應用於探求生物動力參數值之方法應屬獨立批次實驗,惟此方法會因為批次反應器內污泥(取自實際操作中之連續流生物反應器系統)所處環境之基質濃度突然增高而可能導致微生物生理上適應與遲滯的問題。因此本研究提出two-stage CSTR系統之新型實驗設計,讓微生物處在高、低氨氮濃度(Reactor 1、Reactor 2)之馴養環境下(二倍污泥齡以上的時間),再取出污泥以批次反應器求得兩種馴養環境下之硝化動力參數值。
依本研究之fed-batch實驗結果,硝化菌在環境氨氮濃度突增之情況下會有生理反應遲滯現象發生(以SOUR為生物活性指標參數)。自two-stage CSTR系統之Reactor 1、Reactor 2移出之污泥求得高氨氮濃度環境之Monod型動力參數皆明顯大於低氨氮濃度環境者,經統計檢定後結果亦如此。
依單段式硝化動力模式模擬結果,以獨立批次實驗求得不同θc下之動力參數代入模式(Lawrence and McCarty模式與本研究提出之模式)模擬之NH4+-N濃度較系統實驗數據迴歸求得之動力參數值和不同θc下求得之動力參數平均值代入模式所模擬之NH4+-N濃度更接近實驗值。依參數敏感度分析,以Lawerence and McCarty模式模擬出流水氨氮濃度時,動力參數k和Y最為敏感、其次為Kd,Ks最不敏感;以本研究提出之模式模擬出流水氨氮濃度時,動力參數k較Ks敏感。
將強化培養求得之亞硝酸氮氧化菌(第二段硝化反應)動力參數,配合initial rate方法可求得one-stage CSTR系統各試程之亞硝酸氮氧化菌分率(f2 = 0.25 ~ 0.30之間,平均值 = 0.259)和第一段硝化反應動力參數,其中f2值與依熱力學觀念(energetic basis)計算所得理論值0.225頗為接近。此外,以二段式硝化反應動力模式模擬系統出流水之NH4+-N與NO2--N濃度,結果模式計算值與實驗值頗為吻合(NH4+-N誤差在 ± 2%以內,NO2--N誤差在 ± 5%以內)。依二段式硝化反應參數敏感度分析結果,k2和f2最為敏感,其次為Ks2,k1和Ks1最不敏感。
To predict accurately the treated water quality from a kinetic model, a key point is to obtain reliable biokinetic parameter values. Nowadays, independent batch experiments have been frequently used to determine biokinetic parameter values. Nonetheless, an unavoidable problem of sluggish biochemical reaction, induced by a sudden change of growth environment, dose occur during the period of independent batch experiments. Therefore in this study, an innovated two-stage CSTR system is proposed and used for acclimatizing microorganisms under both high and low ammonia bulk concentrations for at least two-fold microbial cell residence time (θc). Thereafter, sludges with different acclimatizing environments removed from the reactors can be used to determine biokinetic parameter values by independent batch experiments.
From the fed-batch study, sluggish biochemical reaction of nitrifiers (SOUR serves an indicator of microbial activity) did occur under a sudden increase of ammonia bulk concentration. From independent batch experiments, the Monod-type biokinetic parameter values of nitrifiers in Reactor 1 (under an acclimatizing environment with a high ammonia bulk concentration) are remarkably higher those of nitrifiers in Reactor 2 (under an acclimatizing environment with a low ammonia bulk concentration). The above results have also been confirmed by statistical tests in this study.
From the simulated results of one-step nitrification models (Lawrence and McCarty model and our proposed model), the calculated residual NH4+-N concentrations of the one-stage CSTR system (under a designate θc)by using the biokinetic parameter values determined under the same θc are in a good agreement with the experimental results, excepting biokinetic parameter values determined under various θc (Lineweaver-Burk plot with the data from one-stage CSTR system) or by taking the average of biokinetic parameter values from various θc. From parametric sensitivity analyses, the parameters k and Y used in the Lawrence and McCarty model are more sensitive than other parameters, Kd the next and, Ks the least ; while the parameter k used in the proposed model is more sensitive than Ks.
According to the kinetic parameter values of nitratifiers (second-step nitrification) together with the initial rate method, the distributed fractions of nitratifiers (f2 = 0.25 – 0.30, avg. = 0.259) and the kinetic parameter values of nitratifiers (first-step nitrification) can be estimated. The estimated f2 in this study is close to that of the theoretical (energetic basis ; f2 = 0.225). In addition, from the simulated results of the proposed two-step nitrification model, the calculated residual NH4+-N and NO2--N concentrations of the one-stage CSTR system are only ± 2% and ± 5% deviated from the experimental results, respectively. From parametric sensitivity analyses, the parameters k2 and f2 are more sensitive than other parameters, Ks2 the next and, k1 and Ks1 the least.
目 錄
授 權 書….…………………………………………………………. 1
中文摘要….………………………………………………………………Ⅰ
英文摘要….………………………………………………………………Ⅲ
目  錄….………………………………………………………………Ⅴ
圖 目 錄….………………………………………………………………………Ⅷ
表 目 錄….………………………………………………………………………Ⅹ
符號說明….…….……………………………………………………………ⅩII
第 一 章 緒論…………………………………………………………………. 1
1–1 研究動機………………………………………………………..…... 1
1–2 研究目的……………………………………………………………. 3
第 二 章 文獻回顧………………………………………………………….… 5
2–1 氮循環中之硝化作用………………………………………….…… 5
2–2 硝化作用影響因素 ………………………………………………... 7
2-2-1 溶氧…...…………………………………………………………….. 7
2-2-2 溫度…...…………………………………………………………….. 7
2-2-3 pH...…………………………………………………………………. 8
2-2-4 氨及亞硝酸分子…...……………………………………………….. 8
2-2-5 有機負荷及異營菌...……………………………………………….. 9
2-2-6 毒性物質……………………………………………………………. 10
2–3 生物反應動力………………………………………………………. 10
2-3-1 Michaelis-Menten Kinetics…………………………………………. 11
2-3-2 Monod Kinetics..……………………………………………………. 13
2-3-3 Lawrence and McCarty Kinetics……………………………………. 14
2-3-4 Haldane Kinetics……………………………………………………. 16
2–4 硝化動力與參數求解…..…………………………………………... 18
2–5 生物動力參數影響因素..…………………………………………... 22
2–6 生物系統之細菌分率…..…………………………………………... 25
2–7 連續流懸浮生長反應器系統(one-stage CSTR system)之動力模式.26
2–8 生物動力常數迴歸分析..…………………………………………... 29
第 三 章 連續流懸浮生長反應器動力模式…………………………………. 31
3–1 單段式硝化反應…...……………………………………………….. 31
3–2 二段式硝化反應……………………………………………………. 33
第 四 章 實驗設備與方法……………………………………………………. 35
4–1 實驗設備……………………………………………………….…… 35
4-1-1 兩段式連續流培養系統 (two-stage CSTR system)…………….…. 35
4-1-2 一段式連續流培養系統 (one-stage CSTR system)…….…………. 35
4-1-3 批次反應器.………………………………………………………… 35
4–2 實驗方法…..………………………………………………………... 37
4-2-1 試驗廢水….………………………………………………………… 37
4-2-2 硝化污泥之馴養……………………………………………………. 37
4-2-3 系統操作程序………………………………………………………. 38
4-2-4 獨立批次實驗之操作…………………………………………….… 39
4-2-5 動力分析……………………………………………………………. 39
4-2-6 統計分析……………………………………………………………. 44
4-2-7 亞硝酸氧化菌分率之測定…………………………………………. 45
4-2-8 水質分析……………………………………………………………. 47
第 五 章 結果與討論 ………………………………………………………… 48
5–1 硝化菌生理遲滯現象之觀察………………………………………. 48
5–2 One-Stage CSTR系統之硝化反應………………………………… 50
5-3-1 One-Stage CSTR系統之操作性能…………………………….…... 50
5-3-2 One-Stage CSTR系統之單段式硝化動力………………………… 52
5-3-3 One-Stage CSTR系統之二段式硝化動力 ……………………. 62
5–3 Two-stage CSTR系統之硝化反應………………………………… 70
5-3-1 Two-Stage CSTR系統之操作性能…………………………….….. 70
5-3-2 獨立批次反應器(高、低氨氮濃度環境馴養下)單段式硝化動力.. 72
5–4 單段式硝化動力參數和模式之模擬與驗證………………………. 74
5-4-1 模式模擬使用之動力參數值 ………………………………….. 74
5-4-2 模式之模擬與驗證…………………………………………………. 75
5-4-3 參數敏感度分析………………………………………………….… 83
5–5 二段式硝化動力模式之模擬與驗證………………………………. 85
5-5-1 模式模擬使用之動力參數值………………………………………. 85
5-5-2 模式之模擬與驗證……………………………………………….… 86
5-5-3 參數敏感度分析……………………………………………….…… 88
第 六 章 結論…………………………………………………………….…… 90
參考文獻 ………………………………………………………………………. 93
誌 謝 ……………………………………………………………………...100
自 述 ……………………………………………………………………...101
Alleman, J. E. 1984. Elevated nitrite occurrence in biological wastewater treatment system. Wat. Sci. Tech. 17: 409-419.
Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., Srinath, E. G. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. WPCF. 48 (5): 835-852.
APHA, AWWA, WPCF (1995, 1998) Standard Methods for the Examination of Water and Wastewater. 19th and 20th ed. American Public Health Association, Washington DC.
Atenstrom M. K. and Poduska, R. A. 1980. The effect of dissolved oxygen concentration on nitrification. Wat. Res. 14: 643-649.
Bailey, J. E. and Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd edition. McGraw-Hill, New York.
Balmelle, B., Nguyen, K. M., Capdeville, B., Cornier, J. C., Deguin, A. 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Tech. 26 (5-6): 1017-1025.
Barbeau, D. S. (1992) Determination of extant biodegradation kinetics from a single oxygen consumption curve. M. S. Thesis. Clemson University, S.C.
Beccari, M., Marani, D., Ramadori, R. 1979. A critical analysis of nitrification alternatives. Wat. Res. 13: 185-192.
Beccari M., Pinto, A. C. Di, Ramadori, R., Tomei, M . C. 1992. Effect of dissolved oxygen and diffusion resistances on nitrification kinetics. Wat. Res. 26 (8): 1099-1104.
Beckman, W. J., Avendt, R. J., Mulligan, T. J. and Kehrberger, G. J. 1972. Combined carbon oxidation-nitrification. J. WPCF 44: 1916-1931.
Beg, S. A., Siddiqi, R. H., Ilias, S. 1982. Inhibition of nitrification by arsenic, chromium, and fluoride. J. WPCF. 54 (5): 482-488.
Bridle, T. R., Climenhage, D. C. and Stelzig, A. 1979. Operation of a full-scale nitrification-denitrification industrial waste treatment plant. J. WPCF 51: 127-139.
Charley, R. C., Hooper, D. G., Mclee, A. G. 1980. Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Wat. Res. 14: 1387-1396.
Christensen, M. H., Harremoes, P. and Jensen, O. R. 1977. Combinrd sludge denitrification of sewage utilizing internal carbon source. Prog. Wat. Tech. 8: 589-599.
Chudoba, P., Capdeville, B., Chudoba, J. 1992. Explanation of biological meaning of the S0/X0 ratio in batch cultivation. Wat. Sic. Tech. 26 (3-4): 743-751.
Chudoba, J., Čech, J. S., Chudoba, P. 1985. The effect of aeration tank configuration on nitrification kinetics. J. WPCF, 57 (11) 1078-1083.
Daigger, G. T., Grady Jr., C. P. L. 1981. An assessment of the role of physiological adaptation in the transient response of bacterial cultures. Biotechnol. Bioeng. 24: 1427-1444.
Diagger, G. T., Grady Jr., C. P. L. 1982. The dynamicsof microbial growth on soluble substrates. Wat. Res. 16: 365-382.
Dinçer, A. R., Kargı, F. 2000. Kinetics of sequential nitrification and denitrification processes. Enzyme and Microbiol. Tech. 27: 37-42.
Drtil, M., Németh, P., Bodík, I. 1993. Kinetic constant of nitrification. Wat. Res. 27 (1): 35-39.
Fdz-Polanco, F., Villaverde, S., Garcia, P. A. 1996. Nitrite accumulation in submerged biofilters-combined effedts. Wat. Sci. Tech. 34 (3-4): 371-378.
Gee, C.S., Pfeffer, J. T., Suidan, M. T. 1990a. Nitrosomonas and Nitrobacter interactions in biological nitrification. J. Envir. Eng. (ASCE). 116 (1): 4-17.
Gee, C. S., Suidan, M. T., Pfrffer, J. T. 1990b. Modeling of nitrification under substrate-inhibiting conditions. J. Envir. Eng. (ASCE). 116 (1): 18-31.
Grady Jr., C. P. L., Smets, B. F., Barbeau, D. S. 1996. Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Wat. Res. 30 (3): 742-748.
Grau, P., Dohányos, M., Chudoba, J. 1975. Kinetics of multicomponent substrate removal by activated sludge. Wat. Res. 9: 637-642.
Hanaki, K., Wantawin, C., Ohgaki, S. 1990. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Wat. Res. 24 (3): 289-296.
Her, Jiunn-Jye, and Huang, Ju-Sheng. 1995. Denitrifying kinetics involving the distributed ratio of reductases. J. Chem. Tech. Biotechnol. 62: 261-267.
Huang, J. S., Her, J. J. and Jih, C. G. 1998. Kinetics of denitritification and denitratification in anoxic filters. Biotechnol. Bioeng. 59 (7): 52-61.
Iyer, M. S., Wiesner, T. F., Rhinehart, R. R. 1999. Dynamic Reoptimization of a fed-batch fermentor. Biotechnol. and Bioeng. 36 (1): 10-21.
Knowles, G., Downing, A. L. and Barrett, M. J. 1965. Determination of kinetic coefficients for nitrifying bacteria in mixed culture, with the aid of an electronic computer. J. Gen. Microbiol. 38: 263-278.
Kong, Z., Vanrolleghem, P., Willems, P. and Verstraete, W. 1996. Simultaneous determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer. Wat. Res. 30 (4): 825-836.
Lawrence, A. W. and McCarty, P. L. 1970. Unified basis for biological treatment design and operation. J. Sanitary Eng. Div. (ASCE). 96: SA3: 757.
Lokshina, L. Y., Vavilin, V. A.and Kettunen, R. H. 2001. Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Wat. Res. 35 (12): 2913-2922.
MacCarty, P. L. 1964. Thermodynamics of biological synthesis and growth. Proc., 11th Int. Conf. on Water Pollution Res., Tokyo, Japan, 169-199.
Mauret, M., Paul, E. Puech-Costes, E., Maurette, M. T. and Baptiste, P. 1996. Application of experimental research methodology to the study of nitrification in mixed culture. Wat. Sci. Tech. 34 (1-2): 245-252.
Metcalf & Eddy Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. International editions, McGraw-Hill, New York.
McAvoy, D. C., Grady Jr., C. P. L., Blok, J., Feijtel, T. C. J., Federle, T. W. and Larson, R. J. 1998. A simplified modeling approach using microbial growth kinetics for predicting exposure concentration of organic chemicals in treated wastewater effluents. Chemosphere. 36 (10): 2291-2304.
McGhee, T. J. 1991. Water supply and sewerage. 6th ed., International editions, McGraw-Hill, New York.
Montgomery D. C. 2001. Design and analysis of experiments. 5th ed., John Wiley & Sons, Inc., New York.
Münch, E. V., Lant, P. and Keller, J. 1996. Simultaneous nitrification and denitification in bench-scale sequencing batch reactors. Wat. Res. 30 (2): 277-284.
Neufeld, R. D., Hill, A.J. and Adekoya, D. O. 1980. Phenol and free ammonia inhibition to Nitrosomonas activity. Wat. Res. 14: 1695-1703.
Noggle, J. H. 1993. Pratical curve fitting and data analysis: software and self-instruction for scientists and engineers. Prentice-Hall, Inc., New Jersey.
Poduska, R, A. and Andrews, J. F. 1975. Dynamics of nitrification in the activated sludge process. J. WPCF. 47 (11): 2599-2618.
Prakasam, T. B. S. and Loher, R. C. 1972. Microbial nitrification and denitrification in concentrated wastes. Wat. Res. 6: 859-869.
Schoberl, P. and Engel, H. 1964. Dar verhalten der nitrification kakterien gegenuber gelostem. Archiv. Fin. Mikrobiolgie. pp. 393-400.
Shammas, N. 1986. Interations of temperature, pH, and biomass on the nitrification process. J. WPCF 58, 52-59.
Sharma, B. and Ahler, R. C. 1977. Nitrification and nitrogen removeal. Wat. Res. 11: 897-925.
Sheintuch, M., Tartakovsky, B., Narkis, N. and Rebhun, M. 1995. Substrate inhibition and multiple states in a continuous nitrification process. Wat. Res. 29 (3): 953-963.
Shieh, W. K.and La Motta, E. J. 1979a. Effect of initial substrate concentration on the rate of nitrification in a batch experiment. Biotechnol. Bioeng. 21: 201-211.
Shieh, W. K.and La Motta, E. J. 1979b.The intrinsic kinetics of nitrification in a continuous flow suspend growth reactor. Wat. Res. 15: 1273-1279.
Smith L. H., McCarty, P. L. and Kitanidis, P. K. 1998. Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weight nonlinear least-squares analysis of the integrated Monod equation. Appl. Envir. Microbiol. 64 (6): 2044-2050.
Srinath, E. G., Prakasam, T. B. S. and Loehr, R. C. 1974. A technique for estimating active nitrifying mass and its application in designing nitrifying systems. Proc. 29th Ind. Waste Conf., Purdue Univ. pp. 1038-1048.
Srna, R. F. and Baggaley, A. 1975. Kinetic response of perturbed marine nitrification systems. J. WPCF. 47 (3): 472-486.
Stratton, F. E. and McCarty, P. L. 1967. Envir. Sci. Tech. 1 (5): 405-410.
Tang, W. T., Wisecarver, K. and Fan, L. S. 1987. Dynamics of draft tube gas-liquid-solid fluidized bed bioreactor for phenol degradation. Chem. Eng. Sci. 42 (9): 2123-2134.
Templeton, L. L.and Grady Jr. C. P. L. 1988. Effect of culture history on the determination of biodegradation kinetics by batch and fed-batch techniques. J. WPCF 60 (5): 651-658.
Weber , A. S. and Tchohanoglous, G. 1984. Nitrification in water hyacinth treatment systems. M. ASCE 111:59-82.
Williamson, K. J.and McCarty, P. L. 1975. Rapid measurement of Monod half-velocity coefficients for bacteria kinetics. Biotechnol. Bioeng. 17: 915-924.
Wong-Chong, G. M. and Loehr, R. C. 1975. The kinetics of microbial nitrification. Wat. Res. 9: 1099-1106.
Wong-Chong, G. M. and Loehr, R. C. 1978. Kinetics of microbial nitrification : nitrite-nitrogen oxidation. Wat. Res. 12: 605-609.
Yang, L. and Alleman, J. E. 1992. Investigation of batchwise nitrite build-up by enriched nitirfication culture. Wat. Res. 26 (5-6): 997-1005.
蔡建成,2001。單一污泥系統硝化/脫硝之動力學(涵蓋硝化菌分率/脫硝酵素分率)。國立成功大學環境工程學系碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top