跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃任偉
研究生(外文):Zin-Win Huang
論文名稱:粒狀氫氧化鐵吸附地下水中砷之研究
論文名稱(外文):Adsorption of arsenic by Granular Ferric Hydroxide in groundwater
指導教授:林財富林財富引用關係
指導教授(外文):Tsair-Fuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:111
中文關鍵詞:平衡吸附粒狀氫氧化鐵管柱動力
外文關鍵詞:ColumnKineticEquilibriumAdsorptionGEHArsenic
相關次數:
  • 被引用被引用:31
  • 點閱點閱:1338
  • 評分評分:
  • 下載下載:249
  • 收藏至我的研究室書目清單書目收藏:1
砷是台灣西南部和東北部地下水中常見的天然污染物,其濃度分佈由數個μg/L到數個mg/L等級。研究顯示,長期飲用含砷地下水,對人體健康有極大的危害,因此台灣已於2000年底將飲用水中砷濃度標準由50μg/L降至10μg/L。由於傳統淨水程序,無法有效去除砷,必須藉助高級處理,例如吸附法、加強混凝沉澱法等,才能達到法規值,因此本研究擬用粒狀氫氧化鐵(GEH),已商業化之除砷吸附劑進行研究,包括實驗室平衡、動力部分,並探討應用在實場之可能性.
平衡吸附實驗是探討去離子水中GEH對砷之吸附量和pH值的關係。實驗結果顯示,pH值的降低會造成吸附量升高的趨勢,當初始濃度為6.1mg/L時,pH值由10.2降至6.9,吸附量則由12.1mg/g (dry geh)增加至36.2mg/g (dry geh)。另外本研究為瞭解地下水中常見之磷酸鹽對砷酸鹽之競爭吸附影響, 以磷酸鹽對砷(V)之不同最初莫耳濃度比(IMR)做探討,實驗結果發現IMR=5較IMR=0對砷之吸附量減少約40%,但IMR=5、10、15、20之間的對砷之吸附量則變化不大。另一方面實驗初步結果顯示等背景化合物(EBC)模式適用於GEH於三條崙地下原水中之吸附平衡試驗,其詳細理論及應用,有待進一步研究討論。
動力吸附實驗則藉由動力吸附實驗結果進行孔隙擴散模式(PDM)之模擬以及預測,模式中可使用Freundlich 或 Langmuir Isotherm吸附平衡參數代入,實驗結果顯示,砷在GEH中的動力吸附行為可合理地用PDM模擬,且經由模式最佳化所得之孔隙擴散係數範圍介於 8.0*10-8cm2/sec至5.0*10-7cm2/sec之間,曲折度則是20-125之間。
管柱試驗分成實驗室桌上型管柱以及雲林三條崙模場管柱。桌上型管柱實驗結果顯示,初始As(V)濃度為125±15μg/L,, EBCT=82.4sec,在出流水濃度小於10μg/L的狀態下,通過空床體積(BV)為106,000(BV),此時GEH對As(V)吸附量為12,200(mg/m3),較活性氧化鋁吸附量高5-10倍。雲林三條崙模場管柱採用之進流水為三條崙淨水廠之清水,含砷濃度在8-16μg/L,此模場操作已逾半年,出流水砷濃度維持在法定標準(10μg/L)以下,但與相關文獻結果相比較發現模場管柱內之GEH吸附量偏低,推測其原因可能是管柱內質傳不佳所造成,有待後續研究探討。
Arsenic is a common natural contaminant in the groundwater of southwestern and northeastern parts of Taiwan. The arsenic concentration in ground water ranges from mg/L level to mg/L level. Long-term consumption of arsenic-contaminated groundwater is risky to the human body and therefore Taiwan EPA has revised the standard of arsenic in drinking water from 50 mg/L to 10 mg/L at the end of 2000. However, the conventional water treatment processes may not be able to remove arsenic to a concentration complied with the standard. Therefore, a commercial adsorbent—granular ferric hydroxide (GEH), is investigated in this study for its adsorptive behavior, and to understand its use in practical application.
During this equilibrium adsorptive experiment, the variation of pH value in de-ion waters while the amount of arsenic being adsorbed by GEH was first explored. Result of this experiment showed that when the pH value was lowered, the adsorptive capacity has the tendency to increase. When the initial concentration was at 6.1 mg/L, the pH value decreased from 10.2 to 6.9 and the adsorptive capacity increased from 12.1mg/g (dry geh) to 36.2mg/g (dry geh). Subsequently, this research sought after understanding the competition of a anion—phosphate and its competitive effect. Using the initial molar ratio (IMR) between phosphate and arsenic (V) to investigate, result of the experiment showed that the amount adsorbed decreased by about 40% between IMR=0 and IMR=5, but showed no significant difference between IMR=5, 10, 15, and 20. Lastly is the research on the application of the equivalent background compound(EBC)model. Initial result shows that the EBC mode could be applied to the GEH equilibrium experiment where As(V) was added to the Santiaolun groundwater, where there is still room for investigation in its detailed theory and application.
The kinetic adsorption experiment focused mainly on using the result of the kinetic adsorption experiment to carry out the simulation and prediction of the pore diffusion model (PDM). The adsorptive equilibrium parameter required using this model could be substituted with the Freundlich or the Langmuir Isotherm parameters. Particle diameter of the GEH chosen ranged in three groups, between 30-40mesh, 30-70mesh, and 80-100mesh. Study show that the optimal range of the pore diffusion model was between 8.0*10-8cm2/sec and 5.0*10-7cm2/sec, while the tortuosity was between 20 and 125.
The column experiment was divided into the small-scale column in the laboratory and thebig-scale column at Santiaolun in Yunlin. Result of the small-scale column experiment showed that the initial As(V) concentration was at 125±15μg/L, EBCT=82.4sec when the concentration was less than 10μg/L, the bed value (BV) was 106,000BV. At this moment, the capacity of GEH to As(V) was 12,200mg/m3, 5-10 times greater than the capacity of active alumna(AA) . The experiment at Santiaolun, Yunlin, used treated water from Santiaolun water purifying treatment center, with the arsenic concentration level at 8-16μg/L. This column has been in operation for more than 6 months to date and the water production has been consistently within the legal parameter of less than 10μg/L. However, when compared with related records it was found that the capacity of GEH inside the column was low, which, was speculated as due to the result of bad mass transmission of the column interior, and thus requires further research and discussion.
中文摘要 I
英文摘要 III
誌謝 V
目錄………………………………………………………………………...VI
表目錄……………………………………………………………..….…….X
圖目錄………………………………………………………...………….. XIII
第一章 前言
1-1 研究緣起…………………………………………….….……… 1
1-2 研究目的與內容………………………………….….……… 3
第二章 文獻回顧
2.1 砷的特性及對人體的危害…………………….….……………5
2.1.1 砷的來源…………………………………….…….……… 5
2.1.2 砷的水化特性……………………………….…………... .6
2.1.3 砷的毒性及對人體的危害……………………………..…7
2.2 台灣地區地下水中砷的流佈…………………………………..14
2.3 砷型態轉變…………………………….…….………………….16
2.4 淨水程序常用之除砷技術..………………………………….…19
2.5 粒狀氫氧化鐵(GEH)介紹………………………….…………. 22
2.6 吸附基本理論…………………………...…….……………….. 24
2.7 等溫吸附線……………………………………….…….……… 26
2.8 等背景化合物(EBC)模式………………………………… 30
2.8 動力吸附模式-孔隙擴散模式………………………………… 32
第三章 實驗方法與設備
3.1 粒狀氫氧化鐵(GEH)之介紹…………………………..………. 35
3.2 GEH特性分析方法………………………………..…………... 37
3.2.1 比表面積和孔徑分佈……………………………………. 37
3.2.2 表面型態觀察………………………………….……….… 38
3.2.3 等電位點的量測………………………………………….. 38
3.3 實驗用水與實驗材料………...……….….………………… 40
3.4 GEH批次吸附試驗…………………………………….….……..46
3.5 動力吸附模式-孔隙擴散模式……...…….….………………… 48
3.6 管柱貫穿實驗………………………...….………………… 49
第四章 結果與討論
4.1 GEH之特性分析………………………………..……………. 55
4.1.1 比表面積和孔徑分佈結果……………………………...…55
4.1.2 表面型態觀察………………………………………..…… 59
4.1.3 等電位點的量測……………………………………..…… 64
4.2 GEH於去離子水中動力與平衡吸附結果………..…………... 67 4.2.1 pH值與吸附量之關係………………………………..….67
4.2.2 背景離子強度之影響……………………………………..71
4.2.3 競爭因子-正磷酸鹽之探討……………….……….…….. 73
4.2.3 GEH於去離子水中之孔隙擴散係數………………..……75
4.3 GEH在三條崙原水中動力與平衡吸附結果…………….……78
4.3.1 等背景化合物模式的適用性………………….………..… .78
4.3.2 不同粒徑分佈GEH的孔隙擴散係數………………..…81
4.4 管住試驗結果
4.4.1 桌上型管柱試驗………………………………………….. 88
4.4.2 三條崙模場管柱試驗…………………………………… 92
第五章 結論與建議
5.1 結論部分………………………………………………..……… 101
5.2 建議部分……………………………………………………….. 103
參考文獻………………………………………………………………... 104
自述

表 目 錄
表2.1 各種水體中砷含量的調查……….…………………………..9
表2.2 各種砷化物之半反應式及氧化還原電位………………… .10
表2.3 砷各物種之游離常數(pka)…………..…………..………… .11
表2.4 各縣市烏腳病與含砷濃度關係之統計表……….…………15
表2.5 粒狀氫氧化鐵的基本參數………...……………………..…23
表2.6 物理吸附與化學吸附之比較……………………..….……..25
表3.1 三條崙淨水場地下水來源………………………………….41
表3.2 近期三條崙淨水場原水和清水之水質資料……………….42
表4.1 GEH比表面積、總孔隙體積以及平均孔徑………..…….59
表4.2 GEH的EDS分析……………………………….………… 60
表4.3 各種氧化物之等電位點…………....…………..….….…… 65
表4.4 As(V)在不同pH值下之等溫吸附參數值…………………69
表4.5 模式最佳後所求得之孔隙散係數及平均誤差……………83
表4.6 實驗室桌上型管柱之操作參數..….………………………. .89
表4.7 管柱除砷效果之比較……………………………………….90
表4.8 三條崙模場工作日誌…………………………………….…93
表4-9 模場管柱實驗和文獻值之比較……………………………95
表4-10 三條崙淨水場除砷方法之比較…………………………..100

圖 目 錄
圖2.1 砷化合物之pE-pH圖………….………..…..…….………..12
圖2.2 在不同pH值下砷物種之分佈圖………………………..…13
圖2.3 添加Fe2+對水中As3+型態之轉變實驗……………..….….. 18
圖2.4 Brunauer 等溫吸附線分類………………………….…...…29
圖3.1 實驗流程圖……………………………………….…...…… 36
圖3.2 桌上型管柱示意圖…………………………..…………….. .52
圖3.3 三條崙模場管柱示意圖…………………………..…..…….53
圖3.4 模場管柱管線配置圖…………………………..…...………54
圖4.1 GEH對氮氣之吸脫附曲線…………...…….………..……. 58
圖4.2 GEH(30-70mesh)之孔徑分布圖……………………………58
圖4.3 GEH(30-70mesh)之SEM圖…………………………….…..61
圖4.4 GEH(80-100 mesh)之SEM圖………………………………62
圖4.5 已吸附砷GEH(30-70 mesh)之SEM圖……………………..63
圖4.6 GEH對pH值之界達電位……………..…………………….66
圖4.7 GEH(30-70mesh)於去離子水中之吸附動力曲線….………..69
圖4.8 GEH在不同pH值之等溫吸附曲線…………………..…..…70
圖4.9 GEH吸附量和pH值之關係圖…….….…………..………70
圖4.10 不童離子強度下之吸附量比較圖…………………………72
圖4.11 GEH於不同磷酸鹽比例下之等溫吸附線………………....74
圖4.12 孔隙擴散模式模擬GEH之動力曲線..……………..……...76
圖4.13 孔隙擴散模式模擬GEH之動力曲線……..…..………….. 77
圖4.14 三條崙原水添加不同濃度砷之GEH吸附平衡圖…………80
圖4.15 砷殘留率對GEH添加量之關係圖………………. ………..80
圖4.16 GEH於三條崙原水中之吸附動力曲線…..………………... 84
圖4.17 孔隙擴散模式預測GEH之吸附動力曲線………. …………84
圖4.18 GEH(30-70mesh) 之孔隙擴散模式最佳化之模擬結果…….85
圖4.19 GEH(30-40mesh)之孔隙擴散模式最佳化之模擬結果……...86
圖4.20 GEH (80-100mesh) 之孔隙擴散模式最佳化之模擬結果…..87
圖4.21 桌上型管柱吸附實驗貫穿曲線圖(五價砷初始濃度
125±15μg/L)…..……………………………………………....91
圖4.22 桌上型管柱吸附實驗貫穿曲線圖(五價砷初始濃度2.8 0.1
mg/L )…………………………………………………………91
圖4.23 三條崙模場管柱之不同日期下採樣口所測得之砷濃度變化
………………………………………………………………...96

圖4.24 三條崙模場管柱之貫穿曲線……………………………….96
圖4.25 為模場管柱之追蹤劑測試圖……………………………… 97
Cherry, J. A., Shaikh, A. U., Tallman, D. X., R. V. Nicholson., “Arsenic Species as an Indicator of Redox Conditions in Groundwater”, J. Hydrology., Vol. 43, pp. 373-392, (1979).
Chen, S.L., Dzeng, S.R., M.H. Yang., “Arsenic Species in Groundwater of the Blackfoot Disease Area, Taiwan”, Environ. Sci. Technol., Vol. 28, pp. 877-881, (1994).
Chen, S. L., Yeh, S.J., Yang, M.H., Lin, T.H., “Trace Element Concentration and Arsenic Speciation in the Well Water of a Taiwan Area with Endemic Blackfoot Disease”, Biol. Trace Elem. Res., Vol. 48, pp. 263-274, (1995).
Chen, H. W., Frey, M. M., Clifford, D.,McNeill, L. S., Edwards, M., “Arsenic Treatment Considerations”, J. AWWA, Vol. 91, pp. 74-85, (1999).
Chiu, Van. Q., Hering, Janet. G., “Arsenic Adsorption and Oxidation at Manganite Surfaces. 1. Method for Simultaneous Determination of Adsorbed and Dissolved Arsenic Species”, Environ. Sci. Technol. Vol. 34, pp. 2029-2034, (2000).
Clifford, D. A., Ion Exchange and Inorganic Adsorption, In Water Quality and Treatment. 4th Ed., Ed. By Potius, F. W., American Water Works Association, McGraw-Hill, Inc., New York. (1990).
Clifford, D. A., Lin, C. C., “Arsenic (III) and Arsenic(V) Removal from Drinking Water in San Ysidro, New Mexico”, USEPA Project Summary, EPA-600-s2-9-011, Cincinati, Ohio, USA. (1991).
Detlef, R.U., Knappe, Y. M., Snoeyink, V. L., “Predicting the Capacity of Powered Activated Carbon for Trace Orangic Compounds in Natural Waters”, Environ. Sci. Technol., Vol. 32, pp. 1694-1698, (1998).
Driehaus, W., Jekel, M., Hildebrandt, U., “Granular Ferric Hydroxide -a New Adsorbent for the Removal of Arsenic from Natural Water”, J. Water Supp. Techno. -Aqua., Vol., 47, pp. 30-35, (1998).
Edwards, M., “Chemistry of Arsenic Removal during Coagulation and Fe-Mn Oxidation ”, J. AWWA, Vol. 86, No. 9, pp. 64-78, (1994).
Edwards, M., Patel, S., McNeill, L., Chen, H. W., Frey, M., Eaton, A. D., Antweiler, R. C., Taylor, H. E., “Considerations in As Analysis and Speciation”, J. AWWA, Vol. 90, pp. 103-113, (1998).
Elizalde-Gonzalez, M. P., Mattusch, J., Einicke, W. D., Wennrich, R. “Sorption on Natural Solids for Arsenic Removal”, Chemical Engineering Journal, Vol. 81, pp. 187-195, (2001).
Forstner, U., Haase, I., “Geochemical Demobilization of Metallic Pollutants in Solid Waste-implications for Arsenic in Waterworks Sludges”, J. Geochem. Explor., Vol. 62, pp. 29-36, (1998).
Fox, K. R., Sorg, T. J., “Controlling Arsenic, Fluoride, and Uranium by Point-of-Use Treatment ”, J. AWWA, Oct, pp. 81-84, (1987).
Fox, K. R., “Field Experience with Point-of-Use Treatment Systems for Arsenic Removal”, J. AWWA, Vol. 81, pp. 94-101, (1989).
Frank, P., Clifford, D., “Arsenic (III) Oxidation and Removal from Drinking Water”, U.S.EPA Project. Summary, 600/s2-86/021, (1986).
Frey, M. M., Owen, D. M., Chowdhury, Z. K., Raucher, R. S., Edwards, M., “Cost to Utilities of a lower MCL for Arsenic”, J. AWWA, Vol. 90, pp. 89-102, (1998).
Hathway, S. W., Rubel, F. J., “Removing Arsenic from Drinking Water”, J. AWWA, Vol. 79, No. 8, pp. 61-65, (1987).
Hayes, K. F., Leckie, J. O., “Modeling Ionic Strength Effects on Cation Adsorption at Hydrous Oxide/Solution Interfaces”, J. Colloid. Interface Sci, Vol. 115, pp. 564-572, (1987).
Hering, J. G., Chen, P. Y., Wilkie, J. A., Elimelech, M., Liang, S., “Arsenic Removal by Ferric Chloride”, J. AWWA., Vol. 88, pp. 155-167, (1996).
Holl, W. H., “Elimination of Arsenic from Drinking Water by Means of a Selective Adsorbent”, The 8th International Conference on Drinking Water Quality Management and Treatment Technology, Kaohsiung, Taiwan, pp. 27-29 May, (2002).
Hung, H.W., T.F. Lin, “Kinetic and Equilibrium Adsorption of MTBE onto Different Adsorbents”, the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, 20-23 May, (2002).
Knappe, D. R. U., Matsui, Y., Snoeyink, V. L., Roche, P., Prados, M. J., Bourbigot, M. -M.,“Predicting the Capacity of Powered Activated Carbon for Trace Organic Compounds in Natural Waters”, Environ. Sci. Technol., Vol. 32, pp. 1694-1698, (1998).
Knodo, H., Ishiguro, Y., Ohno, K., Nagase, M., Toba, M., Makoto, T.,“Naturally Occurring Arsenic in the Groundwater in the Southern Region of Fukuoka Prefecture, Japan”, Wat. Res., Vol. 33, pp. 1967-1972, (1999).
Lin, T. F., Wu, J. K., “Adsorption of Arsenic and Arsenate within Activated Alumina Grains: Equilibrium and Kinetics”, Wat. Res., Vol. 35, NO.8, pp. 2049-2057, (2001).
Lowell, S., Shields, J.E., Powder Surface Area and Porosity, John Wiley and Sons, 2ed. N.Y. (1984).
Manning, B. A., Goldberg, S., “Adsorption Stability of Arsenic (III) at the Clay Mineral-Water Interface”, Environ. Sci. Technol., Vol. 31, pp. 2005-2011, (1997).
McNeill, L. S., Edwards, M,, ”Arsenic Removal during Precupitative Softening”, J. Env. Eng., ASCE, Vol. 123, pp. 453-460, (1997b).
Najm, I. N., Snoeyink, V. L.,Richard, I., ”Effect of Initial Concentration of a SOC in Natural Water on Its Adsorption by Activated Carbon”, J. AWWA., Vol. 83, pp. 57-63, (1991).
Oscarson, D. W., Huang, P. M., Defosse, C., A. Herbillon, ”Oxidative Power of Mn(IV) and Fe(III) Oxides with Respect to As(III) in Terrestrial and Aquatic Environments”, Nature, Vol. 291, pp. 450-451, (1981).
Ruthven, D. M., Principles of Adsorption and Adsorption Processes, pp. 29-30, (1984).
Sadler, R., Olszowy, H., Shaw, G., Connell, DD., “Soil and Water Contamination by Arsenic from Atannery Waste”, Water Air and Soil Poll., Vol. 78, pp. 189-198, (1994).
Smedley, P. L., Kinniburgh. D. G., “A Review of Source, Behavior and Distribution of Arsenic in Natural Waters”, Applied Geochemistry, Vol. 17, pp. 517-568, (2002).
USEPA (2000a) ., “Arsenic in Drinking Water, Treatment Technologies : Removal”, http://www.epa.gov/safewater/ars/treat.html.
Xu, H., Allard, B., Grimvall, A.,“Effects of Acidification and Natural Organic Materials on the Mobility of Arsenic in the Environment”, Water Air and Soil Poll., Vol. 57-58, pp. 269-278, (1991).
王成財,「砷As(V)在水化鐵、鋁氧化物表面吸附特性之研究」,國立成功大學環境工程學系碩士論文,1990。
李國欽等,「台灣各地區水稻田及水中砷含量調查」,科學發展,第七卷,第八期,pp. 798-809,1979。
李俊德、何鴻哲,「逆滲透法對含砷地下水處理可行性研究」,成大環工系,1991。
呂鋒洲,「螢光物質-腐植酸與烏腳病之相關研究」,中華衛生雜誌,第15卷,第三期,pp.139-149,1996。
阮國棟,「砷之污染特性及處理技術」,工業污染防制,第5卷,第二期,pp. 156-165,1986。
吳錦坤,「氧化鋁吸附地下水中砷之研究」,國立成功大學環境工程學系碩士論文,1999。
林財富,「淨水廠砷去除技術之選擇」,自來水會刊第十九卷第二期,第74卷,pp.82-104,2000。
郭宗禮,「烏腳病盛行地區之相關研究」,中華衛生雜誌,第15卷,第三期,pp. 116-125,1996。
袁如馨,「活性鋁去除地下水中砷之研究」,自來水會刊雜誌,第25卷,pp. 38-51,1988。
陳從和,「砷之特性及其檢驗處理方法」,自來水會刊雜誌,第13卷,pp. 105-115,1977。
陳建仁,江漢全,「宜蘭縣龍德工業區及其附近地區地下水質之調查與監測計畫」,中華民國公共衛生學會,1997。
曹守仁,「中國大陸無機砷污染調查及研究現況」,中華衛生雜誌,第15卷,第三期,pp. 6-10,1996。
葉宣顯、賴文亮,「水中砷混凝去除機構之初探」,中國環境工程學刊,Vol. 1, NO. 2, pp. 65-71,1991。
張坤森,「鉻、銅離子與γ-氧化鋁固液界面間吸附反應之平衡及動力研究」,國立台灣大學環境工程學研究所博士論文,1993。
鈕式如,「中國大陸慢性砷中毒及其防治現況」,中華衛生雜誌,第15卷,第三期,pp. 1-5,1996。
劉鎮宗,「砷與生態環境的關係」,科學月刊,第26卷,第一期,pp. 134-140,1995。
羅美棧,「本省西南地區地下水砷含量調查研究報告」,自來水會刊雜誌第九期,pp. 48-60,1975。
羅美棧,「台灣省地下水中含砷量調查研究(第二次報告)」,自來水會刊雜誌,第十期,pp. 33-48,1976。
羅美棧、林坤金,「蘭陽地區地下水中含砷量調查報告」,台灣環境衛生,第十二卷,第二期,pp. 5-18,1981。
羅新衡、劉婉菁,「砷化鎵半導體IC製程含砷廢水處理」,第六屆水再生及再利用研討會,pp. 59-67,2001。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top