跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭志維
研究生(外文):Chih-Wei Peng
論文名稱:神經纖維之選擇性刺激與阻斷的效果
論文名稱(外文):Effects of Selective Stimulation and Blocking on Nerve Fibers
指導教授:陳家進陳家進引用關係
指導教授(外文):Jia-Jin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
中文關鍵詞:電刺激高頻阻斷坐股神經神經環電極肌肉疲疺
外文關鍵詞:nerve cuff electrodemuscle fatigueelectrical stimulationhigh frequency blockingsciatic nerve
相關次數:
  • 被引用被引用:1
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
電刺激的技術已經成功地應用在恢復中樞神經系統損傷病患的某些功能的缺失。傳統神經電刺激方法招募神經肌肉呈現反生理順序狀態,像是無法同時達到選擇性刺激小直徑神經纖維並且阻斷大直徑神經纖維。然而高頻阻斷是一種可行的電刺激技術可達到選擇性刺激與阻斷神經纖維。本研究目的在於建立一套實驗系統與動物模組來進行高頻阻斷的研究。

本研究選用紐西蘭白兔進行急性動物實驗。將一個五環的神經環電極架設在右側坐股神經上,在神經環電極近端(驅動刺激)與遠端(阻斷刺激)分別傳送兩頻道的刺激電流提供高頻阻斷研究;此外,在實驗中會藉由一套力矩量測系統來評估電刺激或阻斷時的表現。我們首先找出適當的驅電刺激參數可達到激發所有神經幹上的運動神經纖維,同時使得肌肉達到平順與最大僵直收縮;經由試驗三種不同的阻斷波形,包括單相、對稱雙相與不對稱方波來比較阻斷的效果並找出適當的阻斷參數;最後,藉由肌肉疲疺的實驗進行驗證高頻阻斷是否可以達到選擇性刺激與阻斷各種大小的神經纖維。

由動物實驗我們發現驅動刺激的頻率在60赫茲以上才能達到小於10%最大力矩之變異性的平順肌肉收縮。在每一次實驗都可得到等長招募曲線,之後選用雙相不對稱方波的阻斷刺激在不同的阻斷電流強度下會得到較好的阻斷效果;並且最大的調變範圍可達到百分之九十以上最大力矩輸出。在肌肉疲疺實驗,我們的結果已經證實在高頻阻斷下可以達到選擇性刺激較小的神經並且同時阻斷較大的神經。未來高頻阻斷技術的應用不僅是膀胱控制與痙攣抑制等神經義肢發展的基礎,更是一種新的工具可提供神經肌肉控制的研究。
Electrical stimulation techniques have been applied in restoration of certain dysfunctions in central nerve system lesion patients. Conventional neural stimulation method recruits the muscle nerves in a reverse order of physiologic manner, i.e., can not recruit small diameter nerve fibers without recruiting large diameter ones. However, high frequency blocking technique is a feasible method for achieving selective stimulation and blocking nerve fibers. The aim of the study is to establish an experiment system and animal model for high frequency blocking investigation.

In this study, we selected New Zealand white rabbit for acute animal study. A nerve cuff electrode with five rings was mounted on right side of sciatic nerve, and delivered two channels of stimulus current to nerve cuff at proximal site (for driving stimulus) and distal site (for blocking stimulus) for high frequency blocking investigation. Furthermore, a torque measurement system was established for assessing the stimulation or blocking performance in this study. We first find out suitable stimulation parameters for driving stimulus to activate all motoneuron fibers in nerve trunk and to produce smooth and tetanic muscle contraction. Three different blocking waveforms including monophasic, symmetric biphasic, and asymmetric biphasic waveforms, were tested to compare the blocking effects and to search for suitable blocking parameters. Finally, a muscle fatigue experiment was performed to verify whether high frequency blocking can selective stimulation and blocking varied sizes of nerve fibers.

From the animal studies, we found that at a stimulation frequency above 60 Hz smooth muscle contraction with small variation less 10 % of maximal torque can be achieved. After obtaining the isometric recruitment curves for each experiment, blocking stimulus with biphasic asymmetric waveform at varied blocking current amplitude shows better blocking effect. The maximal manipulation range can be above 90 % of maximal torque output. In muscle fatigue test, our results proved that high frequency blocking technique could achieve selective stimulation of smaller nerve fibers and blocking larger fibers. The development of high frequency blocking technique is not only a basis for developing the neural prostheses for bladder control and spasticity suppression, but also is a novel tool for neuromuscular control studies.
Chinese Abstract i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Tables vi
List of Figures vii

Chapter 1 Introduction 1
1.1 Background 1
1.2 Electrical Stimulation and Blocking in Nerve Fibers 2
1.3 Selective Stimulation in Peripheral Nerve 6
1.3.1 Electrodes Placement for Selective Stimulation in Space 7
1.3.2 Selective Stimulation in Fiber Diameters 8
1.4 Concepts of High Frequency Blocking 10
1.5 Motivation and Purposes 12

Chapter 2 Material and Methods 13
2.1 Configuration of Experimental System 13
2.1.1 Torque Measurement System 14
2.1.2 Stimulation System 16
2.1.3 Recording System 17
2.2 Animal Preparation 18
2.3 Electrode Implantation 20
2.4 Experimental Protocol 21
2.4.1 Parameters Used in Driving Stimulus 21
2.4.2 Effects of Blocking Stimulation 22
2.4.3. Verification of Selective Stimulation on Fiber Diameters 24

Chapter 3 Results 25
3.1 Parameters in Driving Stimulus 25
3.1.1 Stimulation Frequency for Smooth Contraction 25
3.1.2 Recruitment Curve for Tetainc Contraction 28
3.2 Effect in Blocking Stimulation 30
3.2.1 Pattern of Response Torque in Blocking Trials 30
3.2.2 Comparison of Blocking Effect in Three Types of Blocking Waveform 33
3.3 Effects of Selectivity in Fiber Diameters 36

Chapter 4 Discussion and Conclusion 37
4.1 Discussion 37
4.1.1 Stimulation Parameters in Driving Stimulus 37
4.1.2 Effect in Blocking Stimulus 38
4.1.3 Effects of Selectivity in Fiber Diameters 39
4.2 Conclusion 40

Reference 41
1. W. F. Andrews, D. B. McCreery, L. A. Bullara, et al., “Effects of prolonged electrical stimulation of peripheral nerve,” Neural prostheses: Fundamental studies. Prentice Hall, New Jersey, 1990.

2. R. Baratta, M. Ichue, S. K. Hwang, et al., “Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode,” IEEE Trans. Biomed. Emg., vol. 36, pp. 836-43, 1989.

3. B. R. Bowman, D. R. Mcneal, “Response of single alpha motoneurons to high-frequency pulse trains. Firing behavior and conduction block phenomenon.” Applied Neurophysiology., vol. 49, pp. 121-38, 1986.

4. Z. P. Fang, J. T. Mortimer, “Selective activation of small motor axons by quasitrapezoidal current pulses,” IEEE Trans. Biomed. Emg., vol. 38, pp.168-74, 1991.

5. P. H. Gorman, J. T. Mortimer, “The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation,” IEEE Trans. Biomed. Emg., vol. 30, pp.407-414, 1983.

6. P. A. Grandjean, J. T. Mortimer, “Recruitment properties of monopolar and bipolar epimysial electrodes,” Ann. Biomed. Emg., vol. 14, pp. 53-66, 1986.

7. R. J. Greenberg, T. J. Velt, M. S. Humayun, et al., “A computational model of electrical stimulation of the retinal ganglion cell,” IEEE Trans. Biomed. Emg., vol. 46, pp. 505-14, 1999.

8. W. M. Grill, J. T. Mortimer, “Stimulus waveforms for selective neural stimulation,” IEEE Trans. Biomed. Emg., vol. 42, pp. 168-74, 1995.

9. W. M. Grill, J. T. Mortimer, “Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes,” Journal of Neuroscience Methods., vol. 65, pp. 43-50, 1996.


10.K. A. Kaczmarek, J. G. Webster, P. Bachyrita, “Electrotactile and vibrotactile displays for sensory substitution system,” IEEE Trans. Biomed. Emg., vol. 38, pp. 1-16, 1991.

11.A. Kralj, T. Bajd, R. Turk, et al., “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” J. Rehabilitation R&D, vol. 20, pp. 3-20, 1983.

12.J. C. Lilly, “Injury and excitation by electric currents. In: Electrical stimulation of the brain,” Austin Texas, Univ., pp. 60-64,1961.

13.G. E. Lobeb, “Neural prosthetic interfaces with the nervous system,” Trends in Neuroscience, vol. 12, pp. 195-201, 1989.

14.D. R. Mcneal, “Analysis of a model of a model for excitation of myelinated nerve,” IEEE Trans. Biomed. Emg., vol. 23, pp.329-37, 1976.

15.W. D. Memberg, P. H. Peckham, M. W. Keith, “A surgically-implanted intramuscular electrode for an implantable neuromuscular stimulation system,” IEEE Trans. Rehab. Emg., vol. 2, pp. 80-91, 1994.

16.S. Miyoshi, S. Shimizu, J. I. Mastsushima, et al., “Proposal of a new method for narrowing and moving the stimulated region of cochlear implants: animal experiment and numerical analysis,” IEEE Trans. Biomed. Emg., vol. 46, pp. 451-60, 1999.

17.D. Popovic, T. Sinkiaer, “Control of movement for the physically disabled,” Springer, New York, 2000.

18.F. Rattay, “Analysis of a model of models for extracellular fiber stimulation,” IEEE Trans. Biomed. Emg., vol. 36, pp.676-82, 1989.

19.L. S. Robblee, T. L. Rose, “Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation,” Neural prostheses: Fundamental studies. Prentice Hall, New Jersey, 1990.

20.W. L. C. Rutten, H. J. Van Wier, J. H. M. Put, “Sensitivity and selectivity of intraneural stimulation using a silicon electrode array,” IEEE Trans. Biomed. Emg., vol. 38, pp.192-98, 1991.

21.A. G. Scheiner, E. B. Polando, Marsolais, “Design and clinical application of a double helix electrode for functional electrical stimulation,” IEEE Trans. Biomed. Emg., vol. 41, pp. 425-31, 1994.

22.H. S. Shanker, L. M. Tu, S. Robin, et al., “Reduction of bladder outlet resistance by selective sacral root stimulation using high- frequency blockade in dogs: An acute study,” J. Urology, vol.160, pp.901-07, 1998.

23.M. Solomonow, “External control of the neuromuscular system,” IEEE Trans. Biomed. Emg., vol. 31, pp.752-63, 1984.

24.A. Stefanovska, N. Gros, L. Vodovnik, “Chronic electrical stimulation for the modification of spasticity in hemiplegic patients,” Scand. J. Rehab Med. Supl., vol. 17, pp.115:21, 1988.

25.R. B. Stein, P. H. Peckham, D. B. Popovic, “Neural Prostheses: Replacing Motor Function after Disease or Disability,” Oxford University Press, New York, 1992.

26.J. Tanner, “Reversible blocking of nerve conduction by alternating current excitation,” Nature., vol. 195, pp. 712-13, 1962.

27.D. J. Tyler, D. M. Durand, “Interfascicular electrical stimulation for selectively activating axons,” IEEE Engineering in Med. and Biol., vol. 13, pp. 575-83, 1994.

28.C. Van Den Honert, J. T. Mortimer, “A technique for collision block of peripheral nerve: Single stimulus analysis,” IEEE Trans. Biomed. Emg. vol. 28, pp. 373-78, 1991.

29.N. Wedenski, “Wie Rasch Ermudet Der Nerv,” ZBL. MED. WISS., pp. 65-68, 1884.

30.R. Williamson, “A new generation neural prosthesis”, Ph.D. Thesis, Medical Sciences-Biomedical Engineering, University of Alberta, Canada, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top