跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宇德
研究生(外文):Yu-Te Chen
論文名稱:應用無線傳輸於居家使用型之功能性電刺激踩車系統
論文名稱(外文):Apply Wireless Communication for FES-Cycling System of In-home Use
指導教授:陳家進陳家進引用關係
指導教授(外文):Jia-Jin Jason Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:51
中文關鍵詞:不對襯肌力功能性電刺激無線傳輸混合式運動
外文關鍵詞:Hybrid ExerciseFunctional Electrical StimulationWireless TransmissionAsymmetrical Muscle Force
相關次數:
  • 被引用被引用:2
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展一套適用於居家型混合式運動之功能性電刺激踩車系統,包括友善的人機介面控制、體積小且輕便之電刺激器及適合居家實用的踩車機構。混合式運動踩車系統除可使用於臨床中心外,特別設計U型軌道和上肢曲柄以方便患者於居家時的使用。患者於踩車運動時將所坐之輪椅推進U型輪椅停置區後,固定輪椅即可進行踩車運動,此方式可以避免如傳統式復健腳踏車於踩車運動前由輪椅移位至腳踏車座椅上的危險。患者於電刺激前可以先利用上肢曲柄帶動下肢作暖身運動,解決傳統式系統須有治療師在旁協助其暖身的不便;除此之外患者亦能利用上半身的手部曲柄鍛鍊上半身以增加運動量和心肺功能。新型的刺激器與控制器大幅降低其硬體空間以利於攜帶,因此亦可用於功能性電刺激站立或走路的使用上。控制器上則建立以掌上型電腦為控制基礎的整合資料擷取系統。在控制法則上採用兩組的模糊邏輯控制器來決定刺激電流之時序與強度,以適應具不對襯肌力患者的踩車運動。另外可藉由控制器無線傳輸的功能,讓患者可以隨時將踩車所紀錄的踩車數據回傳至臨床中心的資料庫中,經由臨床中心的治療人員統計分析後,依據個人不同的踩車狀況調整刺激模式以符合個案需求,待患者於下回進行踩車時再透過控制器無線傳輸的功能,從臨床中心的資料庫中下載更適於本身的刺激模式,以達到更合適的訓練和成效。
根據臨床的試驗已證實,使用兩組模糊邏輯控制器的控制法則顯現相當良好的控制性能,此外對於具不對襯肌力的下半身癱瘓病人而言亦能延長其肌力疲乏的時間。而本混合式踩車系統除大幅降低其所佔空間亦相當方便於居家使用。未來除了持續進行醫學中心和居家的臨床試驗外,依據相似的復健原理,計劃將功能性電刺激踩車系統應用於半邊偏癱患者的復健使用上,使用兩組模糊邏輯控制器的控制法則進行踩車運動,期望可以達到更好的足步訓練效果。
This study is to develop the Functional Electrical Stimulation (FES) cycling system for hybrid exercise of in-home use. Several new features, including friendly man-machine graphic user interface (GUI), portable stimulator and better mechanical design for convenient operation at home, were implemented in this FES-cycling device. The hybrid exercise ergometer was performed with arm-cranking and leg-cycling. Arm-crank can be used to initialize cycling by the individual and warm up before electrical stimulation. The user can slide into the U-shape track of ergometer and perform the FES-cycling exercise directly on the wheelchair. Additionally, voluntary upper body exercise by using arm-crank can improve much in cardiopulmonary function. The new stimulator and controller reduce much space and make it portable for in-home use. The controller was based on pocket PC (PPC) for control and data acquisition. A control scheme with two fuzzy logical controllers (FLC) was also adopted to control the stimulation pattern and stimulation intensity of two legs separately. With the wireless transmission capability, the recorded cycling data were transmitted to clinical center for cycling smoothness evaluation as well as for redesign of training protocol.
New control scheme with two FLC is adapted for the paraplegic subjects with asymmetrical muscle force. This new control scheme allows to individually adjust the stimulation intensity depending on the muscle force of each leg, therefore cycling time before muscle fatigue can be prolonged. The new hybrid exercise ergometer not only reduces the space but also is convenient to operate at home. For further development, we expect that this novel FES-cycling device with two FLC can assist the hemiparetic stroke in the progress of rehabilitation toward better ambulation process.
中文摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VII

Chapter 1  Introduction 1
1.1 Background 1
1.2 FES-assisted Cycling System for Subjects with Neurological Lesions 2
1.3 Mechanical Structure of Cycling Ergometer 3
1.4 Design of Stimulation Patterns and Control Strategy in FES-cycling 5
1.5 Motivations and Propose 7

Chapter 2  Methods 9
2.1 Cycling Ergometer 10
2.1.1 Features of Ergometer 10
2.1.2 Dead Spots of Ergometer 12
2.1.3 Systematic Design of Stimulation Pattern 14
2.2 Constant Current Stimulator 18
2.3 PPC-based FES-cycling Controller 19
2.3.1 Specifications of Controller 19
2.3.2 Control Strategy 21
2.3.3. Wireless Transmission and PC-based Analysis System 26
Chapter 3  Results 32
3.1 Cycling Ergometer 32
3.2 PPC-based Controller 34
3.2.1 Control Performance 35
3.2.2 Wireless Transmission 40
3.3 Evaluation of Cycling Smoothness 41

Chapter 4  Discussion and Conclusion 45
4.1 Discussion 45
4.2 Conclusion and Future Development 47

References 49
1.J. Allin and G. F. Inbar, “FNS control schemes for the upper limb,” IEEE Trans. Biomed. Eng., vol. 33, no. 9, pp. 809-817, 1985.
2.J. Allin and G. F. Inbar, “FNS parameter selection and upper limb characterization,” IEEE Trans. Biomed. Eng., vol. 33, no. 9, pp. 809-817, 1986.
3.P. B. Arnold, P. P. McVeym, W. J. Farrell, T. M. Deuloo, and A. R. Grasso, “Functional electrical stimulation: Its efficacy and safety in improving pulmonary functional and musculoskeletal fitness,” Arch. Phys. Med. Rehabil., vol. 73, pp.665-668, 1992.
4.L. A. Berntas and P. E. Crago, “Adaptive control of electrically stimulated muscle,” IEEE Trans. Biomed. Eng., vol. 34, no. 2, pp. 140-147, 1987.
5.J. J. Chen and N. Y. Yu, “The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement,” IEEE Trans. Rehab. Eng., vol. 5, pp. 170-178, 1997.
6.J. J. Chen, Y. N. Yu, D. G. Hung, B. T. Ann, and G. C. Chang, “Applying fuzzy logic to control of cycling movement induced by functional electrical stimulation”, IEEE Trans. Rehab. Eng., vol. 5, no. 2, pp. 158-169, 1997.
7.H. Y. Chen, N. Y. Yu, K. S. Chen, K. H. Tsai, L. L. Fu, S. C. Chen, M. H. Huang, and J. J. Chen, “Development of FES-cycling system with network capability for multi-center clinical studies”, J. Med. Biol. Eng., vol. 21, no. 2, pp. 85-92, 2001.
8.D. Gardner, C. H. Chen, K. Ashenayi, and S. Shenoi, “Rea-time operation of an autonomous fuzzy controller”, Proceedings of the Second IEEE International Conference on Fuzzy Systems, pp. 315-320, 1993.
9.R. M. Glaser, J. A. Bruner, S. D. Feinberg, and S. R. Collins, “Locomotion Via Paralyzed leg muscles, feasibility study for a leg-propelled vehicle,” J. Rehab. R & D, vol. 20, pp. 53-61, 1983.
10.M. S. Ju, S. H. Yi, Y. G. Tsuei, and Y. L. Chou, “Fuzzy logic control of electrohydraulic above-knee prostheses,” JSME, Series C, vol. 38, no. 1, pp. 78-86, 1995.
11.A. Kralj and T. Bajd, “Functional electrical stimulation: standing and walking after spinal cord injury,” Boca Raton, CRC Press, 1989.
12.C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller – Part I,” IEEE Trans. Syst. Man Cyber., vol. 20, no. 20, pp. 404-418, Mar./Apr. 1990.
13.C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller – Part II,” IEEE Trans. Syst. Man Cyber., vol. 20, no. 20, pp. 419-435, Mar./Apr. 1990.
14.D. A. Linkens and S. B. Hasnian, “Self-organizing fuzzy logic control and application to muscle relaxant anesthesia,” Proc. Inst. Elec. Eng., Pt. D, vol. 139, no. 4, pp. 381-394, 1992.
15.D. Mallampati and S. Shenoi, “Adaptive fuzzy logic controllers,” Proceedings of the Fourth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Kauai, Hawaii, pp. 62-71, 1991.
16.J. S. Petrofsky, C. A. Phillips, J. Almeida, R. Briggs, E. Couch, and W.Colby, “Aerobic trainer with physiological monitoring for exercise in paraplegic patient,” J. Clin. Eng., vol. 10, pp. 307-314, 1985.
17.J. S. Petrofsky, C. A. Phillips, H. H. Heaton, and R. M. Glaser, “Bicycle ergometer for paralyzed muscle,” J. Clin. Eng., vol. 9, pp. 13-19, 1984.
18.J. S. Petrofsky and J. Smith, “Three-wheel cycle ergometer for use by men and women with paralysis,” Med. & Biol. Eng. & Comput., vol. 10, pp. 364-369, 1992.
19.C. A. Philips, “Functional Electrical Stimulation: Technological Restoration After Spinal Cord Injury,” Springer-Verlag New York Inc., 1991.
20.A. Prochazka and C. M. Wiles, “Electrical stimulation of paretic leg muscles in man, allowing feedback-controlled movements to generated from the wrist,” J. Physiol. vol. 343, pp. 20, 1983.
21.G. Rau, K. Becker, R. Kaufmann, and H. J. Zimmermann, “Fuzzy logic and control: Principal approach and potential applications in medicine,” Artif. Organs, vol. 19, no. 1, pp. 105-112, 1995.
22.S. Shenoi, K. Ashenayi, and M. Timmerman, “Implementation of an 0n-line adaptive fuzzy controller in low-end hardware.” Int. J. of Eng. App. of Artif. Intell., vol. 7, no. 5, pp. 533-543, 1994.
23.P. H Veltink and H. J. Chizeck, “Nonlinear joint angle control for artificially stimulated muscle,” IEEE Trans. Biomed. Eng., vol. 39, no. 4, pp. 368-380, 1992.
24.D. A. Winter, “Biomechanics and Motor Control of Human Movement,” 2nd Ed. New York: Wiley, 1990.
25.F. S. Yang, “System Integration of FES Cycling Ergometer for Paraplegic Subject,” Master Thesis, National Cheng Kung University, 1998.
26.L. A. Zadeh, “Fuzzy sets,” Informat. Control, vol. 8, pp. 338-353, 1965.
27.D. Q. Zhang, “Fuzzy logic control of electric drivers,” Ph.D. thesis, University of L’Aquila, Italy, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top