跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳利芊
研究生(外文):Lih-Chian Wu
論文名稱:腫瘤壞死因子和血小板活化因子乙醯水解脢基因多型性與過敏性氣喘之關聯性分析:腫瘤壞死因子基因單一核甘酸多型性間交互作用增加氣喘發生機率之證據
論文名稱(外文):Association Analysis of Tumor Necrosis Factor (TNF) and Platelet-Activating Factor Acetylhydrolase (PAFAH) Gene Polymorphisms with Atopic Asthma: Evidence for Interaction among Single Nucleotide Polymorphisms of TNF Gene Increase Risk of Asthma
指導教授:王志堯蘇慧貞蘇慧貞引用關係呂政展
指導教授(外文):J.Y .WangH.J. SuC.C. Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:腫瘤壞死因子
外文關鍵詞:TNF
相關次數:
  • 被引用被引用:1
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:2
氣喘是一種孩童常見的慢性呼吸道發炎性疾病。吸入過敏原,如家庭塵瞞後,經由E型免疫球蛋白調控的過敏反應,而產生支氣管收縮。 呼吸道的T淋巴球、嗜酸性白血球、巨噬細胞、以及肥胖細胞浸潤現象,是一項重要的臨床特徵。在不同族群的一些基因關聯性研究中已指出,六號染色體短臂21 (6p21)的位置與氣喘或是過敏性疾病的發生有著密切相關。位於這段區域中的第二型人類白血球抗原、腫瘤壞死因子、與血小板活化因子乙醯水解脢都是造成氣喘的候選基因。而腫瘤壞死因子與血小板活化因子都是參與在呼吸道發炎反應中的重要介質。曾有研究發現,腫瘤壞死因子在氣喘病患痰液中表現增加。且其基因上相對於轉錄起始點的 –308位置若有 G→A的變異,也曾被指出會影響啟動子的轉錄活性。另外在 –863位置的 C→A變異則與較低量的腫瘤壞死因子表現有關。在我們實驗室先前的研究中發現,–308的基因多型性與氣喘發生有關,但–238的多型性卻沒有。除了這兩個點外,還有其他單一核甘酸多型性位置在我們的族群中被找到,如: -1031、-863、-857、及 –806。在本篇研究中發現,腫瘤壞死因子基因啟動子 -1031、-863、-857、及 –806這四個位置的基因多型性皆與氣喘發生有關聯,且這些位置間的交互作用會增加氣喘發生的危險機率。又在我們研究族群中,氣喘患者血清中腫瘤壞死因子表現量較對照組高。但無論是體內或是在周邊血液單核球經過敏原刺激的體外實驗中,我們並沒有發現這些腫瘤壞死因子基因多型性位置與其表現量有關聯性。
血小板活化因子是一種磷酸脂衍生出來的介質,最早是在經抗原刺激且被E型免疫球蛋白致敏化的嗜鹼性白血球中被發現的。它主要的作用是會造成血管收縮、支氣管收縮、以及增加白血球附著在內皮細胞上等發炎反應的特徵。而其在體內主要是受血小板活化因子乙醯水解脢的調控。某些位於血小板活化因子乙醯水解脢基因上的變異,已被指出與氣喘病患中較高的E型免疫球蛋白表現有關。又在我們的族群中,E型免疫球蛋白表現在氣喘孩童中較健康對照組為高。因此,本實驗針對三個血小板活化因子乙醯水解脢基因上的多型性: 位於第四表現序列中的Arg 92 His、第七表現序列中的 Ile 198 Thr、以及第十一表現序列中的Ala 379 Val,探討與氣喘發生和氣喘患者的血清中E型免疫球蛋白濃度之關係。但在我們的研究結果中,這些基因多型性與氣喘發生及氣喘患者的血清中E型免疫球蛋白濃度皆沒有關性.
Asthma is a chronic airway inflammation and is the most common disease of childhood. Bronchial constriction is initiated by IgE-mediated allergy to inhaled allergen such as house dust mite. It is characterized by T lymphocytes, eosinophils, macrophages and mast cells infiltration in the airway wall. Genetic linkage studies in various populations have indicated that chromosome 6p21 was associated with asthma and/or atopy. Within this region, HLA class Ⅱ gene, tumor necrosis factor α (TNFα) and platelet-activating factor acetylhydrolase (PAFAH) are candidate genes for asthma. TNFα and platelet-activating factor are among many mediators involved in the airway inflammation process. Increased levels of TNFα have been reported in sputum of asthmatics. G→A transition at –308 (relative to transcription start site) has been shown to affect promoter transcriptional activity. C→A substitution at –863 is associated with reduced circulating TNFα levels. In our previous study, TNFα promoter region –308 (G/A) polymorphism, but not –238 (G/A), is associated with asthma. Besides –308, several single nucleotide polymorphisms (SNP) also have been revealed at –1031, -863, -857, -806 in our study population. In this report, polymorphisms at –1031, -863, -857, -806 within TNFα promoter region are also associated with asthma. And the combined effects between these polymorphic sites increase the risk of asthma. In our study population, higher serum TNFα level was found in asthmatic group. But we failed to see the associations of the genetic polymorphisms of TNFα promoter with TNFα production in vivo or in vitro after peripheral mononuclear cells stimulated by mitogens.
The platelet-activating factor (PAF) is a phospholipid-derived mediator, originally discovered from antigen-stimulated IgE-sensitized basophils. It can cause vasoconstriction, bronchoconstriction, increased leukocyte adhesion to endothelium, chemotaxis, characteristic of inflammation. Its effects are controlled by PAF-acetylhydrolase (PAFAH). Variants of PAFAH gene were associated with total IgE concentration in asthmatics. Our studies have indicated that asthmatic children have a higher serum IgE levels compared with controls. Three variants of PAFAH gene, Arg92His (exon4), Ile198Thr (exon7), and Ala379Val (exon11) were examined for their associations with asthma and serum IgE levels in asthma patients. None of PAFAH gene polymorphisms was associated with asthma or with total IgE concentration in asthmatics in our studies.
中文摘要…………………………………………………………………………Ⅰ
ABSTRACT………………………………………………………………………Ⅲ
誌謝………………………………………………………………………………...Ⅴ
圖目錄……………………………………………………………………………...Ⅸ
表目錄……………………………………………………………………………...Ⅹ
第一章 序論………………………………………………………………………...1
第一節 氣喘簡介…………………………………………………………………...1
氣喘概論…………………………………………………………………...1
引發氣喘的免疫機轉……………………………………………………...1
氣喘的遺傳研究…………………………………………………………...2
第二節 腫瘤壞死因子與氣喘之關聯……………………………………………...3
腫瘤壞死因子概論………………………………………………………...3
腫瘤壞死因子在氣喘發生過程中扮演的角色…………………………...4
腫瘤壞死因子啟動子基因多型性與氣喘之關聯性……………………...5
腫瘤壞死因子的調控……………………………………………………...6
第三節 血小板活化因子乙醯水解脢與氣喘之關聯……………………………...8
血小板活化因子乙醯水解脢概論………………………………………...8
血小板活化因子乙醯水解脢在氣喘發生過程中扮演的角色…………...8
血小板活化因子乙醯水解脢基因多型性與氣喘之關聯性……………...9
第四節 實驗目標與假說………………………………………………………….10
腫瘤壞死因子啟動子基因多型性與氣喘發生之關係………………….10
腫瘤壞死因子啟動子基因多型性與腫瘤壞死因子濃度之關係……….10
血小板活化因子乙醯水解脢基因多型性與氣喘之關係……………….10
第二章 材料與方法………………………………………………………………13
第一節 抽樣對象與評估標準……………………………………………………13
第二節 萃取 DNA方式…………………………………………………………15
第三節 血清與細胞培養上清液中腫瘤壞死因子 (TNFα)濃度的量測………18
第四節體外培養及刺激周邊血液單核球增生 (Mitogen-stimulated cell proliferation)……………………………………………………………20
第五節 腫瘤壞死因子基因 (TNFα gene)啟動子 (promoter)多型性位置 (polymorphic sites)的基因型 (genotype)的測定……………………...22
第六節 血小板活化因子乙醯水解脢基因 (PAFAH gene)多型性位置的篩檢.27
第七節 血小板乙醯水解脢基因 (PAFAH gene)第四個表現序列 (exon)多型性位置的基因型的測定……………………………………………………31
第八節 血小板乙醯水解脢基因 (PAFAH gene)第七個表現序列 (exon)多型性位置的基因型的測定……………………………………………………32
第九節 血小板乙醯水解脢基因 (PAFAH gene)第十一個表現序列 (exon)多型性位置的基因型的測定…………………………………………………34
第十節 統計分析………………………………………………………………….35
第三章 結果……………………………………………………………………….38
第一節 氣喘組與健康對照組的基本特性……………………………………….38
第二節 腫瘤壞死因子基因啟動子多型性基因型判定結果…………………….38
第三節 腫瘤壞死因子基因啟動子多型性與氣喘之關聯性…………………….38
腫瘤壞死因子基因啟動子各多型性位置與氣喘發生之關聯性……….38
腫瘤壞死因子基因啟動子各多型性位置間之交互作用……………….39
腫瘤壞死因子基因啟動子各多型性位置半套體與氣喘之關聯性…….40
第四節 腫瘤壞死因子表現與氣喘之關聯性…………………………………….41
血清腫瘤壞死因子總量與氣喘之關係………………………………….41
腫瘤壞死因子基因啟動子多型性位置與氣喘病患的血清腫瘤壞死因子總量之關聯性……………………………………………………………41
腫瘤壞死因子基因啟動子各多型性位置間之交互作用對血清腫瘤壞死因子濃度之影響…………………………………………………………42
腫瘤壞死因子基因啟動子多型性位置與氣喘病患的周邊單核球刺激後腫瘤壞死因子濃度之關聯性……………………………………………42
腫瘤壞死因子基因啟動子各多型性位置間之交互作用對氣喘病患的周邊單核球刺激後腫瘤壞死因子濃度之影響……………………………43
第五節 血小板活化因子乙醯水解脢多型性基因型判定結果………………...43
第六節 血小板活化因子乙醯水解脢基因多型性與氣喘之關聯性…………...44
血小板活化因子乙醯水解脢基因各多型性位置與氣喘發生之關聯性………………………………………………………………………..44
血小板活化因子乙醯水解脢基因多型性位置與氣喘病患的血清E型免疫球蛋白總量之關聯性……………………………………………..44
第四章 討論……………………………………………………………………….74
第一節 氣喘組與健康對照組的基本特性……………………………………….74
第二節 腫瘤壞死因子基因啟動子多型性基因型判定結果…………………….74
第三節 腫瘤壞死因子基因啟動子多型性與氣喘之關聯性…………………….74
腫瘤壞死因子基因啟動子各多型性位置與氣喘發生之關聯性……….74
腫瘤壞死因子基因啟動子各多型性位置間之交互作用……………….75
腫瘤壞死因子基因啟動子各多型性位置半套體與氣喘之關聯性…….76
第四節 腫瘤壞死因子表現與氣喘之關聯性…………………………………….77
血清腫瘤壞死因子總量與氣喘之關係………………………………….77
腫瘤壞死因子基因啟動子多型性位置與氣喘病患的血清腫瘤壞死因子總量之關聯性……………………………………………………………77
腫瘤壞死因子基因啟動子各多型性位置間之交互作用對血清腫瘤壞死因子濃度之影響…………………………………………………………78
腫瘤壞死因子基因啟動子多型性位置與氣喘病患的周邊單核球刺激後腫瘤壞死因子濃度之關聯性……………………………………………79
腫瘤壞死因子基因啟動子各多型性位置間之交互作用對氣喘病患的周邊單核球刺激後腫瘤壞死因子濃度之影響……………………………79
第五節 血小板活化因子乙醯水解脢多型性基因型判定結果……………….…81
第六節 血小板活化因子乙醯水解脢基因多型性與氣喘之關聯性………….…81
血小板活化因子乙醯水解脢基因各多型性位置與氣喘發生之關聯性…………………………………………………………………………81
血小板活化因子乙醯水解脢基因多型性位置與氣喘病患的血清E型免疫球蛋白總量之關聯性…………………………………………………82
第七節 總結……………………………………………………………………….82
參考文獻…………………………………………………………………………...83
作者簡介…………………………………………………………………………...90

圖目錄
Figure 1. Genotyping of TNFα–308 promoter polymorphism by SSOP……..47
Figure 2. Genotyping of polymorphism in PAFAH gene exon4 by RFLP…….69
Figure 3. Genotyping of polymorphism in PAFAH gene exon7 by SSP……….70


表目錄
Table 1. Summary of genome-wide linkage studies for atopic phenotypes within the past few years………………………………………………………..11
Table 2. Location and frequency of polymorphisms in the TNFα promoter..12
Table 3. Characteristics of the subjects………………………………………….46
Table 4. Distribution of TNFαgene promoter polymorphic sites among asthmatic and control groups…………………………………………..48
Table 5. The association of specific alleles in each TNFαgene promoter polymorphic site with asthma………………………………………….49
Table 6. Association between TNFαgene promoter polymorphisms and asthmatic stages…………………………………………………………50
Table 7. Association between asthma and TNFαgene promoter polymorphic sites……………………………………………………………………….51
Table 8. Linkage analysis between TNFαgene promoter polymorphic sites in total study population…………………………………………………..52
Table 9. Linkage analysis between TNFαgene promoter polymorphic sites in asthmatics………………………………………………………………..53
Table 10. Linkage analysis between TNFαgene promoter polymorphic sites in control group…………………………………………………………….54
Table 11a. The basic data of two-by-two tests…………………………………..55
Table 11b. Two-by-two tests of pairs of TNFαgene promoter polymorphic sites in asthma………………………………………………………………...58
Table 12. Association of TNFα gene haplotype and asthma………………….59
Table 13. The predicted haplotype frequency of TNFαgene promoter polymorphisms in asthmatics and control…………………………….60
Table 14. Compare serum TNFαconcentration between asthmatics and control……………………………………………………………………61
Table 15. Compare serum TNFαconcentration between different asthmatic stage and control………………………………………………………...62
Table 16. Associations of TNFαgene promoter polymorphic sites with serum TNFα concentration in asthmatics…………………………………..63
Table 17. The combined effects of TNFαgene promoter polymorphic sites on serum TNFα level in asthma…………………………………………64
Table 18. Associations of TNFαgene promoter polymorphic sites with stimulated TNFα concentration in asthmatics………………………65
Table 19. The combined effects of TNFαgene promoter polymorphic sites on stimulated TNFα concentration in asthma…………………………..67
Table 20. Distribution of PAFAH gene polymorphic sites among asthmatic and control groups…………………………………………………………..71
Table 21. The association of specific alleles in eachPAFAH gene polymorphic site with asthma…………………………………………………………72
Table 22. Associations of PAFAH gene polymorphic sites with total serum IgE concentration in asthmatics…………………………………………….73
Allen RD. Polymorphism of Human TNF-α Promoter – Random Variation or Function Diversity? Mol Immunol 1999; 36: 1017-1027.

Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, and Kay AB. Identification of Activated T Lymphocytes and Eosinophils in Bronchial Biopsies in Stable Atopic Asthma. Am Rev Respir Dis 1990; 142: 1407-1413.

Baisch JM, and Capra JD. Linkage Disequilibrium within the HLA Complex does not Extend into HLA-DP. Scand J Immunol 1993; 37: 499-503.

Barnes KC and Marsh DG. The Genetics and Complexity of Allergy and Asthma. Immunology Today 1998; 19: 325-332.

Benyley AM, Meng Q, Robinson DS, Hamid Q, Kay AB, and Durham SR. Increased in Activated T Lymphocytes, Eosinophils, and Cytokine mRNA Expression for Interleukin-5 and Granulocyte/Macrophage Colony-stimulating Factor in Bronchial Biopsies after Allergen Inhalation in Atopic Asthma. Am J Respir Cell Mol Biol 1993; 8: 35-42.

Beutler B and Cerami A. Tumor Necrosis, Cachexia, Shook, and Inflammation: a Common Mediator. Annu Rev Biochem 1988; 57: 505-518.

Beutler B and van Huffel C. Unraveling Function in the TNF Ligand and Receptor Families. Science 1994; 264: 667-668.

Bjornsdottir US and Cypcar DM. Asthma: an Inflammatory Mediator soup. Allergy 1999; 54: 55-61.

Brewster CE, Howarch PH, Djukanovic R, Wilson J, Holgate ST, and Roche WR. Myofibroblasts and Subepithelial Fibrosis in Bronchial Asthma. Am J Respir Cell Mol Biol 1990; 3: 507-511.

Brinkman BMN, Zuijdgeest D, Kaijzel EL, Breedeveld FC, and Verweij C. Relevance of the Tumor Necrosis Factor Alpha (TNFα) –308 Promoter Polymorphism in TNFα Gene Regulaton. J Inflammation 1996; 46: 32-41.

Broid DH, Lotz M, and Cuomo AJ. Cytokines in the Symptomativ Asthma Airways. J Allergy Clin Immunol 1992; 89: 958-967.

Chagani T, Pare PD, Zhu S, Weir TD, Bai TR, Behbehani NA, FitzGerald JM, and Sandford AJ. Prevalence of Tumor Necrosis Factor- α and Angiotensin Converting Enzyme Polymorphism in Mild/Moderate and Fatal/Near –Fatal Asthma. Am J Respir Crit Care Med 1999; 160: 278-282.

Cookson W. The Alliance of Genes and Environment in Asthma and Allergy. Nature 1999; 402: B5-B11.

Elstad MR, Stafforini DM, McIntyre TM, Prescott SM, and Zimmerman GA. Platelet-activating Factor Acetylhydrolase Increases during Macrophage Differentiation: a Novell Mechanism that Regulates Accumulation of Platelet-activating Factor. J Biol Chem 1989; 264; 8467-8470.

Heinzmann A and Deichmann KA. Genes for Atopy and Asthma. Curr Opin in Allergy and Clin Immunol 2001; 1: 387-392.

Higuchi T., Seki N., Kamizono S., Yamada A., Kimura A., Kato H., and Itoh K. Polymorphism of 5’-Flanking Region of The Human Tumor Necrosis Factor (TNF)- α Gene in Japanese. Tissue Antigen 1998; 51: 605-612.

Holgate ST. Asthma genetics: waiting to exhale. Nature Genet. 1997; 15: 227-229.
Holt PG, Macaubas C, Stumbles PA, and Sly PD. The Role of Allergy in the Develpoment of Athma. Nature 1999; 402: B12-B17.

Hsieh KH and Shen JJ. Prevalence of Child Asthma in Taipei, Taiwan, and Other Asian Pacific Countries. J Asthma 1988; 25: 73-82.

Imaizuml T., Stafforini DM, Yamada Y., Mcintyre TM, Prescott SM, and Zimmerman GA. Platelet-Activating Factor: A Mediator for Clinicians. J InterMed 1995; 238: 5-20.

Kips JC, Tavernier JH, Joos GF, Peleman RA, and Pauwels RA. The Potential Role of Tumour Necrosis Factorα in Asthma. Clin. Exp. Allergy 1993; 23: 247-250.
Kirsch CM, Brokaw JJ, Prow DM, and White GW. Mechanism of Platelet-activating Factor –induced Vascular Leakage in the Rat Trachea. Exp Lung Res 1992; 18:447-459.

Kroeger KM, Carville KS, and Abraham LJ. The –308 Tumor Necrosis Factor-α Promoter Polymorphism Effects Transcription. Mol Immuno 1997; 34: 391-399.

Kruosawa M, Yamashita T, and Kurimoto F. Increased Levels of Blood Platelet-activating Factor in Bronchial Asthmatic Patients with Active Symptoma. Allergy 1994; 49: 60-63.

Kruse S, Mao XQ, Heinzmann A, Blattmann S, Roberts MH, Braun S, Gao PS, Forster J, Kuehr J, Hopkin JM, Shirakawa T, and Deichmann. The Ile198Thr and Ala379Val Variants of PAF-Acetylhydrolase Impair Catalytical Activities and Are Associated with Atopy and Asthma. Am. J. Hum. Genet. 2000; 66: 1522-1530.

Lee TC, Lenihan DJ, Malone B, Roddy Lisa LL, and Wasserman SI. Increased Biosythesis of Platelet-cativating Factor in Activated Human Eosinophils. J Biol Chem 1984; 259: 5526-5530.

Longphre M, Zhang LY, Paquette N, and Kleeberger SR. PAF-induced Airways Hyperreactivity Is Modulated by Mast Cells in Mice. Am J Respir Cell Mol Biol 1996; 14: 461-469.

Louis E, Franchimont, A. Piron, Y, Gevaert, Lafontaine NS, Roland S, Mahieu P, Malaise M, Groote DD, Louis R , and Belaiche J. Tumour Necrosis Factor (TNF) Gene Polymorphism Influence TNFα Production in Lipopolysaccharide (LPS)-Stimulated Whole Blood Cell Culture in Healthy Humans. Clin. Exp Immunol 1998; 113: 401-406.

Miwa M, Miyake T, Yamanaka T, Sugatani J, Suzuki Y, Sakata S, Araki Y, and Matsumoto. Characterization of Serum Platelet-activating Factor (PAF) Acetylhydrolase. J. Clin. Invest. 1988; 82: 1983-1991.

Moffatt MF and Cookson WOAC. Tumour Necrosis Factor Haplotypes and Asthma. Hum Molr Genet 1997; 6: 551-554.

Moffatt MF, James A, Ryan G, Musk AW, and Cookson WOAC. Extended Tumour Necrosis Factor/HLA-DR Haplotype and Asthma in An Australian Population Sample. Thorax 1999; 54: 757-761.

Ober C, Cox NJ, Abney M, Di RA, Lander ES, Changyaleket B, and Gidley H. Genome-wide Search for Asthma Susceptibility Loci in a Founder Population: the Collaborative Study on the Genetics of Asthma. Hum Mol Genet 1998; 7: 1393-1398.

Old LJ. Tumor Necrosis Factor (TNF). Science 1985; 230: 630-632.

Osborn L, Hession C, and Tizard R. Direct Expression Cloning of Vascular Cell Adhesion Molecule 1, a Cytokine-induced Endothelial Protein that Binds to Lymphocytes. Cell 1989; 59: 1203-1211.

Prescott SM, Zimmermann GA and McIntyre TM. Platelet-activating Factor. J Biol Chem 1990; 265: 17381-17384.

Rubbia BL, Sappino AP, and Gabbiani G. Locally Applied GM-CSF Induced the Accumulation of Alpha-smooth Muscle Actin Containing myofibroblasts. Virchows Arch B (Cell Patch) 1991; 60: 73-82.

Ruuls SR and Sedgwick JD. Unlinking Tumor Necrosis Factor Biology from the Major Histocompatibility Complex: Lessons from Human Genetics and Animal Models. Am J Hum Genet 1999; 65: 294-301.

Satoh N, Asano K, Naoki K, Iwata M, Kanazawa M, and Tamaguchi K. Plasma Platelet-activating Factor Acetylhydrolase Deficiency in Japanese Patient with Asthma. Am J Respir Crit Care Med 1999; 159: 974-979.

Shah A, Church MK, and Holgate ST. Tumor Necrosis Factor Alpha: A Potential Mediator of Asthma. Clin Exp Allergy 1995; 25: 1038-1044.

Shen LX, Basilion JP, and Stanton VP. Single-Nucleotide Polymorphisms Can Cause Different Structure Folds of mRNA. Proc Natl Acad Sci USA 1999; 96: 7871-7876.

Shirakawa T, Li A, Dubowitz M, Dekker JW, Shaw AE, Faux JA, Ra C, Cookson WOCM, and Hopkin JM. Association between atopy and variants of the β subunit of the high-affinity immunoglobulin E receptor. Nature Genet 1994; 7: 125-130.

Skoog T, Hooft FM, Kallin B, Jovinge S, Boquist S, Nilsson J, Eriksson P, and Hamsten A. A Common Functional Polymorphism (C→A Substitution at Position –863) in The Promoter Region of The Tumour Necrosis Factor-α (TNF-α) Gene Association with Reduced Circulating Levels of TNF-α. Hum Mol Genet 1999; 8: 1443-1449.

Smith RA and Baglioni C. The Active Form of Tumour Necrosis Factor is a Trimer. J Biol Chem 1987; 262: 6951-6954.

Stafforni DM, McIntyre TM, Zimmerman GA, and Prescott SM. Platelet-activating Factor Acetylhydrolase. J. Biol. Chem. 1997; 272: 17895-17898.

Svejgaard A and Ryder LP. HLA and Disease Associations: Detecting The Strongest Association. Tissue Antigen 1994; 43: 18-27.

Takashiba S, Shapira L, Amar S, and DykeTE. Cloning and Characterization of Human TNFα Promoter Region. Gene 1993; 131: 307-308.

Tan EC, Lee BW, Tay AWN, Chew FT, and Tay A HN. Asthma and TNF Variants in Chinese and Malays. Allergy 1999; 54: 402-403.

Terwilliger J and Ott J. Handbook of Human Genetic Linkage. John Hopkins University Press, Baltimore 1994.

Thomas PS, Yates DH, and Barnes PJ. Tumor Necrosis Factor Alpha Increases Airway Responsiveness and Sputum Neutrophilia in Normal Subjects. Am J Respir Crit Care Med 1995; 152: 76-80.

Thomas PS. Tumour Necrosis Factor-α: The Role of This Multifunctional Cytokine in Asthma. Immunol Cell Biol 2001; 79: 132-140.

Udalova IA, Richardson A, Denys A, Smith C, Ackerman H, Foxwell B, and Kwiatkowski D. Functional Consequences of a Polymorphism Affecting NF-κB p50-p50 Binding to the TNF Promoter Region. Mol Cell Biol 2000; 20: 9113-9119.

Vassalli P. The Pathophysiology of Tumor Necrosis Factors. Annu. Rev. Immunol. 1992; 10: 411-452.

Vilen BJ, Cogswell JP, and Ting JPY. Stereospecific Alignment of the X and Y Elements Is Required for Major Histocompatibility Complex Class Ⅱ DRA Promoter Function. Mol Cell Biol 1991; 11: 2406-2415.

Wa TCLK, Mansur AH, Britton J, Williams G, Pavord I, Richards K, Campbell DA, Morton N, Holgate ST, and Morrison JFJ. Association between –308 Tumor Necrosis Factor Promoter Polymorphism and Bronchial Hyperreactivity in Asthma. Clin. Exp. Allergy 1999; 29: 1204-1208.

Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, and Murphy GF. Human Dermal Cells Contain and Release Tumour Necrosis Factor α, which Induces Endothelial Adhesion Molecule. Proc Natl Acad Sci USA 1991; 88: 4220-4224.

Xie X and Ott J. Testing Linkage Disequilibrium between a Disease Gene and Marker Loci. Am J Hum Genet 1993; 53: 1107 (abstract).

Willer PF, Lee CW, Foster DW, Corey EJ, Austen KF, and Lewis RA. Generation and Metabolism of 5-Lipoxygenase Pathway Leukotrienes by Human Eosinophils: Predominant Production of Leukotriene C4. Proc Natl Acad Sci USA 1983; 80: 7626-7630.

Wilson AG., Symons JA, Mcdowell T L, Mcdevitt, and Duff G. W. Effects of A Polymorphism in The Human Tumor Necrosis Factorα Promoter on Transcriptional Activation. Proc. Natl. Acad. Sci. 1996; 94: 3195-3199.

Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F, and Reis A. A Genome-wide Search for Linkage to Asthma Genetics Group. Genomics 1999; 58: 1-8.

Xu J and Zhong NS. The Interaction of Tumour Necrosis Factor Alpha and Endothelin-1 in Pathogenetic Models of Asthma. Clin Exp Allergy 1997; 27: 568-73.

Yamada Y and Yokota M. Roles of Plasma Platelet-Activating Factor Acetylhydrolase in Allergic, Inflammatory, and Atherosclerotic Diseases. Jpn. Circ. J. 1998; 62: 328-335.

Yang KD. Childhood Asthma: Aspects of Global Environment, Genetics and Management. Changgeng Yi Xue Za Zhi 2000; 23 :641-61 (Abstract)

Zhang K, Gharaee KM, McGarry B, Remick D, and Phan SH. TNF-alpha-mediated Lung Cytokine Networking and Eosinophil Recruiment in Pulmonary Fobrosis. Immunology 1997; 158: 954-959.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top