跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓偉民
研究生(外文):Wei-Min Cho
論文名稱:神經網絡突觸活性修飾作用之機轉探討暨代謝型麩胺酸受體所誘發去增益現象之機轉探討
論文名稱(外文):Activity-Dependent Modification of Synaptic Circuit and mGluR-Induced Depotentiation in Hippocampal CA1 Region
指導教授:許桂森許桂森引用關係
指導教授(外文):Kuei-Sen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:129
中文關鍵詞:長期增益現象代謝型麩胺酸受體突觸活性修飾作用長距離傳導作用去增益現象
外文關鍵詞:mGluRlong-term potentiationLTPdepotentiationactivity-dependent modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
在神經系統發育的過程中,神經活性所調控之突觸修飾作用扮演著相當重要的角色。就海馬迴而言,短暫的刺激會引起突觸產生突觸效率 (efficacy) 長而持續地增加或減少,也就是我們平常所謂的長期增益 (Long-term potentiation;LTP) 或長期抑制 (Long-term depression;LTD) 現象。這些長期神經活性的修飾作用被廣泛地認為跟學習與記憶的分子機制有關,並且具有突觸專一性 (input-specific) 的特性,亦即只有受到刺激的徑路才會受到影響。然而,此假說近年來已被做了部分的修飾,亦即包含活化的徑路及其鄰近沒有活化區域中的突觸都會受到神經活性的改變而被修飾,而造成神經網絡裡有更多的修飾作用分布。舉例來說,在海馬迴CA1區域的神經元產生LTP時,可藉由同一條神經輸入徑路 (input) 傳播到鄰近相同或不相同的突觸後神經元上;同樣地,LTD的產生則可在距離較遠的神經元上觀察到。另外,利用組織培養分離的海馬迴神經元中也發現,在其所形成的簡單神經網絡中,刺激glutamatergic synapses所誘發的LTD,對於位在突觸前的神經元,也會產生長距離的逆向回傳作用 (long-range back-propagation)。如此散布的修飾作用似乎是被活化的突觸所釋放出的因子或是可通透細胞膜的因子所造成的,且對於其他突觸的影響程度是依據神經元間相鄰的距離來決定。因此,我們想問的問題是此種長距離神經突觸修飾的作用是否存在於完整的神經網絡裡,如腦薄片組織中。因此,在這個研究中,我們將設計一系列的實驗去探究這些問題。從離體海馬迴腦薄片中發現,我們在Schaffer collateral-CA1 synapses所誘發的長期增益現象,會有回傳回其上游mossy fiber-CA3 synapses的情形發生。這種長期增益現象的逆向回傳與活化NMDA受體有關。一旦將mossy fiber-CA3 synapses由高頻電刺激所誘發的長期增益現象飽和後,即使逆向回傳作用產生,並不會使CA3區域的突觸效率有進一步增加。另外,由associational/commissural這條recurrent fiber的長期增益現象所產生的側向傳導作用 (lateral propagation) 在我們觀察到的逆向回傳作用中也是有可能發生的。更進一步,我們也觀察到逆向回傳作用發生時會伴隨CA3區域PPF比值的降低及會增加突觸後神經元的興奮性。除此之外,我們也發現在mossy fiber-CA3 synapses所誘發的長期增益現象,會有順向傳導到其下游Schaffer collateral-CA1 synapses的情形。由上述這些結果可知,在具有完整神經網絡的海馬迴腦薄片中,長期增益現象是具有長距離傳導 (long-range propagation) 的特性。

長期增益現象 (LTP) 是一種由活性所誘發的突觸效率增加的情形,長久以來,被認為是大腦中學習與記憶的一種重要細胞機制。然而,長期增益現象所造成的持久增益現象,卻可能會造成所有可被修飾的突觸持續性處於增益狀態,而無法再接受或儲存新的訊息。因此,本研究的目的就是要去探討什麼樣的因子及機制可以將長期增益現象給逆轉回來。我們利用大鼠海馬迴腦薄片組織來研究在Schaffer collateral-CA1 synapses,給予代謝型glutamate受體的作用劑DHPG可以產生time-dependent的去增益現象 (depotentiation)。DHPG (10 μM, 5 min) 的給予,對正常突觸傳導會產生長期抑制現象 (long-term depression) 的作用,然而對於已誘發長期增益現象的突觸,則會產生去增益現象。這種作用是可逆的,但與NMDA受體、腺�A酸 (adenosine) A1受體及phospholipase C的活化無關。在長期增益現象誘發後的第3分鐘給與DHPG,會觀察到有DHPG-induced depotentiation的現象產生,而誘發後的第10分鐘或30分鐘時才給予DHPG,則無法產生去增益現象。這種DHPG所誘發的去增益現象,似乎是透過mGluR5這種代謝型glutamate受體來產生的。因為使用的mGluR5作用劑CHPG時,可模擬此種去增益現象的產生;使用mGluR5的拮抗劑,會阻斷產生去增益現象的作用。另外,去增益現象的誘發可避免長期增益現象達到飽和且不需要basal activity的參與。在長期增益現象表現時,DHPG所誘發去增益現象並不影響其PPF的比值。對於前處理protein phospholipase 1/2A和2B的抑制劑okadaic acid (1 μM, 2~4 hr) 和FK506 (10 μM, 2~4 hr) 的海馬迴腦薄片,發現並不影響DHPG所誘發的去增益現象。更進一步我們也發現透過mGluR5作用的PP-LFS刺激方式,也可模擬DHPG所誘發的去增益現象。綜合這些結果發現在Schaffer collateral-CA1synapses,DHPG係透過mGluR5的活化來產生增益的作用。
Activity-dependent synaptic modification is essential for the refinement of nerve connection in developing nervous systems and for the plasticity of mature brain. In the hippocampus, brief trains of activity can trigger long-lasting increases or decreases in synaptic efficacy, commonly referred to as long-term potentiation (LTP) or long-term depression (LTD), respectively. These modification have been implicated as the cellular mechanisms that underlie learning and memory and are known to input-specific, so only activated pathways are affected. But within the vicinity of activated pathways, other non-activated synapses may also become modified, leading to more distributed synaptic modifications within a neural network. For example, LTP generated at one synaptic input to a CA1 hippocampal neuron was found to spread to adjacent synapses on the same or on a different postsynaptic neuron and to result in LTD in more distant neurons. In addition, in simple networks formed by dissociated hippocampal neurons in cultures, LTD induced at glutamatergic synapses can undergo long-range back-propagation to input synapses on the dendrites of the presynaptic neurons. Such spread of synaptic modification appears to depend on membrane-permeable or secreted factors released by the activated synapse, and the extent of influence on other synapses depending on their physical proximity. Taken these findings together, it is of particular interest to determine whether this long-range propagation of synaptic modification exists in an intact neural network. Therefore, in this study, we design a series of experiments to explore this issue. In acutely isolated hippocampal slices, we find that LTP can propagate from induction site at Schaffer collateral-CA1 synapses retrogradely to mossy fiber-CA3 synapses. This backpropagation of LTP was concomitant with a reduction of PPF ratio of CA3 region and was NMDAR-dependent. When LTP induced by high-frequency stimulation at mossy fiber-CA3 synapses was saturated, synaptic efficacy of CA3 synapses could not be further potentiated by backpropagation LTP. In addition, lateral propagation of associational/commissural recurrent fiber LTP can also be induced in the hippocampal slices and may partially contributed to the expression of LTP backpropagation. Furthermore, this LTP backpropagation is also associated with an increase in the excitability of CA3 pyramidal neurons. However, we also find that LTP can propagate from induction site at mossy fiber-CA3 synapses anterogradely to Schaffer collateral-CA1 synapses. These results suggest the existence of a long-range propagation of LTP in acutely isolated hippocampal slices.

Long-term potentiation (LTP) is a form of activity-dependent increase in synaptic efficacy that has been considered to be an important component of the cellular basis of learning and memory in the brain. However, the very persistence of LTP is itself problematical, because it cound lead to a saturation of all modifiable synapses in a potentiated state, making the impossible to store additional new information. Thus, the primary goal on this study is to explore what factors and underlying mechanisms may involve in the reversal of LTP at Schaffer collateral-CA1 synapses. Application of DHPG (10 μM, 5 min) alone can successfully induce a long-term depression of baseline synaptic transmission or depotentiation of previously established LTP, which was reversible and was independent of NMDA receptor, adenosine A1 receptor and phospholipase C activation. This DHPG-induced depotentiation was observed when DHPG was perfused at 3 min after LTP induction. However, when DHPG was applied at 10 or 30 min after induction, significantly less depotentiation was found. This DHPG-induced depotentiation appeared to be mediated by the activation of type 5 of group I metabotropic glutamate receptor (mGluR5), because it was mimicked by bath-applied mGluR5 agonist (CHPG) and was specifically inhibited by mGluR5 antagonist (MPEP). In addition, the induction of depontentiation has ability to unsaturate LTP, and basal activity was not required for its induction. Moreover, pair-pulse facitation (PPF) was not significantly affected by the DHPG-induced depotentiation during LTP expression. Pretreatment of the hippocampal slice with protein phospholipase 1/2A and 2B inhibitors okadaic acid and FK506 had no effect on the DHPG-induced depotentiation. Furthermore, pair pulse-low frequency stimulation (PP-LFS) could mimic DHPG to induce depotentiation in a mGluR5 receptor-dependent manner. These results suggest the activation of postsynaptic mGluR5 may contribute to the induction of DHPG-induced depotentiation at Schaffer collateral-CA1 synapses.
第一部份、神經網絡突觸活性修飾作用之機轉探討
中文摘要 4
英文摘要 7
縮寫檢索表 10
第一章 緒論 12
第二章 實驗材料及方法 16
第一節 腦切片的製備 17
第二節 電氣生理學記錄法 18
Ⅰ、 胞外電氣生理學記錄法 19
Ⅱ、 胞外電氣生理學記錄法 19
Ⅲ、 神經元連結性測試 19
Ⅳ、 統計方法 20
Ⅴ、 藥物之來源與製備 20
第三章 實驗結果 22
第四章 討論 34
第五章 圖表 39
參考文獻 51

第二部分、代謝型麩胺酸受體所誘發去增益現象之機轉探討
中文摘要 59
英文摘要 61
縮寫檢索表 64
第一章 緒論 66
第二章 實驗材料及方法 74
第一節 腦切片的製備 75
第二節 電氣生理學記錄法 76
Ⅰ、 胞外電氣生理學記錄法 77
Ⅱ、 胞內電氣生理學記錄法 77
Ⅲ、 統計方法 77
Ⅳ、 藥物之來源與製備 78
第三章 實驗結果 79
第四章 討論 91
第五章 圖表 96
參考文獻 112
圖表索引 124
自述 127
Abraham WC and Goddard GV (1983) Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305:717-719.

Amaral DG and Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571-591.

Andersen P, Sundberg SH, Sveen O, and Wigström H (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266:736-737.

Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13-26.

Bi G-q and Poo M-m (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18:10464-10472.

Bi G-q and Poo M-m (1999) Distributed synaptic modification in neuronal networks induced by patterned stimulation. Nature 401:792-796.

Bi G-q and Poo M-m (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24:139-166.

Bonhoeffer T, Staiger V, and Aertsen A (1989) Synaptic plasticity in rat hippocampal slice cultures: local Hebbian conjunction of pre- and postsynaptic stimulation leads to distributed synaptic enhancement. Proc. Natl. Acad. Sci. USA 86:8113-8117.

Bradler JE and Barrioneuvo G (1989) Long-term potentiation in hippocampal CA3 neurons: tetanized input regulates heterosynaptic efficacy. Synapse 4:132-142.

Brown TH, Kairiss EW, and Keenan CL (1990) Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13:475-511.

Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC, and Nicoll RA (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590-593.

Constantine-Paton M, Cline HT, and Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13:129-154.

Dudek SM and Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89:4363-4367.

Dunwiddie T and Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J. Physiol. 276:353-367.

Engert F and Bonhoeffer T (1997) Synapse scpecificity of long-term potentiation breaks down at short distances. Nature 388:279-284.

Fitzsimond RM, Song H-j, and Poo M-m (1997) Propagation of activity-dependent synaptic depression in simple neural networks. Nature 388:439-448.

Fuster JM (1995) Memory in the cerebral cortex/An empirical approach to neural networks in the human and nonhuman primate, p53.

Hebb DO (1949) The Organization of Behanior, p62. New York: Wiley.

Hempel CM, Vincent P, Adams SR, Tsien RY, and Selverston AI (1996) Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit. Nature 384:166-169.

Hirsch JC, Barrionuevo G, and Crepel F (1992) Homo- and heterosynaptic changes in efficacy are expressed in prefrontal neurons: an in vitro study in the rat. Synapse 12:82-85.

Hubel DH and Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041-1059.

Katz LC and Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133-1138.

Kossel A, Bonhoeffer T, and Bolz J (1990) Non-Hebbian synapses in rat visual cortex. NeuroReport 1:115-118.

Levy WB and Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res. 175:233-245.

Lynch GS, Dunwiddie T, and Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737-739.

Misgeld U, Sarvey JM, and Klee MR (1979) Heterosynaptic poatactivation potentiation in hippocampal CA3 neuron: long-term changes of the postsynaptic potentials. Exp. Brain Res. 37:217-229.

Mulkey RM and Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967-975.

Muller D, Hefft S, and Figurov A (1995) Heterosynaptic interactions between LTP and LTD in CA1 hippocampal slices. Neuron 14:299-605.

Nicoll RA and Malenka RC (1997) Neurobiology. Long-distance long-term depression. Nature 388:427-428.

Nishiyama M, Hong K, Mikoshiba K, Poo M-m, and Kato K (2000) Calcium release from internal stores regulates polarity and input specificity of synaptic modification. Nature 408:584-588.

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, and Williams SM (2001) Neuroscience, p531. Sinauer.

Rolls ET and Treves A (1998) Neurol Networks and Brain function. New York: Oxford Univ. Press.

Salin PA, Scanziani M, Malenka RC, and Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93:13304-13309.

Schuman EM and Madison DV (1994) Locally distributed synaptic potentiation in the hippocampus. Science 263:532-536.

Staubli UV and Ji ZX (1996) The induction of homo- vs. heterosynaptic LTD in area CA1 of hippocampal slices from adult rat. Brain Res. 714:169-176.

Tao HW, Zhang LI, Bi G-q, and Poo M-m (2000) Selective presynaptic propagation of long-term potentiation in defined neural networks. J. Neurosci. 20:3233-3243.

Tsumoto T and Suda K (1979) Cross-depression: an electrophysiological manifestation of binocular competition in the developing visual cortex. Brain Res. 168:190-194.

Wiesel TN and Hubel DH (1963) Single cell responses in striate cortex og kittens deprived of vision in one eye. J. Neurophysiol. 26:1003-1007.

Wigström H, Gustafsson B, Huang YY, and Abraham WC (1986) Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol. Scand. 126:317-319.

Yamamoto C and Chujo T (1978) Long-term potentiation in thin hippocampal sections stidied by intracellular and extracellular recordings. Exp. Neurol. 58:242-250.

Zhang LI, Tao HW, Holt CE, Harris WA, and Poo M-m (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37-44.

Zheng JQ, Zheng Z, and Poo M (1994) Long-range signaling in growing neurons after local elevation of cyclic AMP-dependent activity. J. Cell Biol. 127:1693-1701.

Amaral DG and Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571-591.

Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Rev. 29:83-120.

Arai A, Kessler M, and Lynch G (1990a) The effects of adenosine on the development of long-term potentiation. Neurosci. Lett. 119:41-44.

Arai A, Larson J, and Lynch G (1990b) Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Res. 511:353-357.

Barrionuevo G, Schottler F, and Lynch G (1980) The effects of repetitive low frequency stimulation on control and “potentiated” responses in the hippocampus. Life Sci. 27:2385-2391.

Bashir ZI and Collingridge GL (1992) NMDA receptor-dependent transient homo- and heterosynaptic depression in picrotoxin-treated hippocampal slices. Eur. J. Neurosci. 4:485-490.

Bashir ZI and Collingridge GL (1994) An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp. Brain Res. 100:437-443.

Bienenstock EL, Cooper LN, and Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2:32-48.

Bittar P and Muller D (1993) Time-dependent reversal of long-term potentiation by brief cooling shocks in rat hippocampal slices. Brain Res. 620:181-188.

Bliss TVP and Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361:31-39.

Bliss TVP and Lømo T (1973) Long-lasting potentiation of sunaptic transmission in the dentate area of the anaesthetized rabbit. J. Physiol. (Lond) 232:331-356.

Bolshakov VY and Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264:1148-1152.

Bortolotto ZA, Fitzjohn SM, and Collingridge GL (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9:299-304.

Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, and Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding proten. Cell 79:59-68.

Calabresi P, Pisani A, Mercuri NB, and Bernardi G (1992) Long-term potentiation in the striatum is ummasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4:929-935.

Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC, and Nicoll GA (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590-593.

Chen YL, Huang CC, and Hsu KS (2001) Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber-CA3 synapses. J. Neurosci. 21:3705-3714.

Coan EJ and Collingridgr GL (1985) Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci. Lett. 53:21-26.

Collingride GL and Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 40:143-210.

Davies CH, Clarke VR, Jane DE, and Collingridge GL (1995) Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CA1 pyramidal neurons. Br. J. Pharmacol. 116:1859-1869.

De Mendonca A, Almeida T, Bashir ZI, and Ribeiro JA (1997) Endogenous adenosine attenuates long-term depression and depotentiation in the CA1 region of the rat hippocampus. Neuropharmacology 36:161-167.

Dingledine R, Hynes MA, and King GL (1986) Involvement of N-methyl-D-aspartate receptors in epileptiform burst firing in the rat hippocampal slice. J. Physiol. (Lond) 380:175-189.

Doyle CA, Cullen WK, Rowan MJ, and Anwyl R (1997) Low-frequency stimulation induces homosynaptic depotentiation but not long-term depression of synaptic transmission in the adult anaesthetized and awake rat hippocampus in vivo. Neuroscience 77:75-85.

Dudek SM and Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13:2910-2918.

Fitzjohn SM, Bortolotto ZA, Palmer MJ, Doherty AJ, Ornstein PL, Schoepp DD, Kingston AE, Lodge D, and Collingridge GL (1998) The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 37:1445-1458.

Fitzjohn SM, Kingston AE, Lodge D, and Collingridge GL (1999) DHPG-induced LTD in area CA1 of juvenile rat hippocampus: characterization and sensitivity to novel mGlu antagonists. Neuropharmacology 38:1577-1583.

Fujii S, Saito K, Miyakawa H, Ito K, and Kato H (1991) Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555:112-122.

Gean PW, Chang FC, Huang CC, Lin JH, and Way LJ (1993) Long-term enhancement of PSP and NMDA receptor-mediated synaptic transmission in the amygdala. Brain Res. Bull. 31:7-11.

Grant SGN, O’Dell TJ, Harl KA, Stein PL, and Kandel ER (1992) Imparied long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903-1910.

Goto S, Matsukado Y, Mihara Y,Inoue N, and Miyamoto E (1986) The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay. Brain Res. 397:161-172.

Harris EW and Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci. Lett. 70:132-137.

Hebb DO (1949) The organization of behanior, p62. New York: Wiley.

Herron CE, Lester RAJ, Coan EJ, and Collingridge GL (1986) Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature (Lond) 322:265-268.

Hess GW and Teyler TJ (1976) Reversible loss of hippocampal long-term potentiation following electroconvulsive seizures. Nature 264:562-564.

Hestrin S, Nicoll RA, Perkel DJ, and Sah P (1990) Analysis of excitatory synaptic action in pyramidal using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond) 422:203-225.

Hölscher C, Anwyl R, and Rowan MJ (1997) Activation of group-II metabotropic glutamate receptors blocks induction of long-term potentiation and depotentiation in area CA1 of the rat in vivo. European Journal of Pharmacology 322:155-163.

Huang CC, Liang YC, and Hsu KS (1999) A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Neurosci. 15:9728-9738.

Huang CC, Liang YC, and Hsu KS (2001) Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. J. Biol. Chem. 276:48108-48117.

Huber KM, Kayser MS, and Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254-1256.

Huber KM, Roder JC, and Bear MF (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86:321-325.

Jung MW and Larson J (1994) Further characteristics of long-term potentiation in piriform cortex. Synapse 18:298-306.

Kandel SJ, Schwartz JH, and Jessell TM (2000) Principles of neuroscience, p1257-1261. McGraw-Hill Press.

Kemp N and Bashir ZI (1999) Induction of LTD in the adult hippocampus by the synaptic activation of AMPA/kainite and metabotropic glutamate receptors. Neuropharmacology 38:495-504.

Kincaid RL, Balaban CD, and Billingsley ML (1987) Differential localization of calmodulin-dependent enzymes in rat brain: evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons. Proc. Natl. Acad. Sci. USA 84:1118-1122.

Kleppisch T, Voigt V, Allmann R, and Offermanns S (2001) Gaq-deficient mice lack metabotropic glutamate receptor-dependent long-term depression but show normal long-term potentiation in the hippocampal CA1 region. J. Neurosci. 21:4943-4948.

Lieberman DN and Mody I (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369:235-239.

Lisman J (1989) A mechanism of Hebb and anti-Hebb processes underlying learning and menory. Proc. Natn.Acad. Sci. U.S.A. 86:9574-9578.

Lujan R, Robert JD, Shigemoto R, Ohishi H, and Somogyi P (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. Neuroanatomy 13:219-241.

Lujan R, Nusser Z, Robert JD, Shigemoto R, and Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8:1488-1500.

Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535-538.

Malenka RC and Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanism. Trends Neirosci. 16:521-527.

Manabe T, Wyllie DJ, Perkel DJ, and Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophysiol. 70:1451-1459.

Mayer ML, Westbrook GL, and Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature (Lond) 309:261-263.

Morioka M, Nagahiro S, Fukunaga K, Miyamoto E, and Ushio Y (1997) Calcineurin in the adult rat hippocampus: different distribution in CA1 and CA3 subfields. Neuroscience 78: 673-684.

Morris RGM, Anderson E, Lynch GS, and Baudry M (1986) Selective impairment of learing and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature (Lond) 319:774-776.

Mulkey RM, Herron CE, and Malenka RC (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261:1051-1055.

Nakanishi S (1994) Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity. Neuron 13:1031-1037.

Nowak L, Bregestovski P, Asher P, Herbet A, and Prochianz A (1984) Magnesium gates glutamate-activated channels in mouse central neurins. Nature (Lond) 307:462-465.

Oliet SHR, Malenka RC, and Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18:1294-1297.

Otani S and Connor JA (1998) Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus. J. Physiol. (Lond) 511:761-770.

Ottersen OP, Fischer BO, Rinvik E, and Storm-Mathisen J (1987) Putative amino acid transmitter in the amygdala. In: Excitatory Amino Acid and Epilepsy (Schwarcz and Ben-Ari, eds), pp53-66. New York: Raven Press.

Palmer MJ, Irving AJ, Seabrook GR, Jane DE, and Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517-1532.

Pin JP and Duvoisin R (1995) Neurotransmitter receptors. I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.

Salin PA, Scanziani M, Malenka RC, and Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93:13304-13309.

Schoepp D, Jane DE, and Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1432-1467.

Scoville WB and Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol. Neurosurg. Psychiat. 20:11-21.

Sejnowksi TJ (1977) Strong covariance with nonlineraly interacting neurons. J. Math Biol. 4:303-321.

Staubli U and Lynch G (1990) Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz stimulation. Brain Res. 513:113-118.

Staubli U, Chun D, and Lynch G (1998) Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18:3460-3469.

Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, and Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neuroscience 4:1079-1085.

Victor RG, Thomas GD, Marban E, and O’Rourke B (1995) Presynaptic modulation of cortical synaptic activity by calcineurin. Proc. Natl. Acad. Sci. USA 92:6269-6273.

Watabe AM, Carlisle HJ, and O’Dell TJ (2002) Postsynaptic induction and presynaptic expression of group I mGluR-dependent LTD in the hippocampal CA1 region. J. Neurophysiol. 87:1395-1403.

Watkins JC and Evans RH (1981) Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21:165-204.

Watkins JC, Krogsgaard-Larsen P, and Honore I (1990) Struture-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25-33.

Wilshaw D and Dayan P (1990) Optimal plasticity from matrix memories: What goes up must come down. Neural Computing 2:85-93.

Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, and Storm DR (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA 92: 220-224.

Young AB and Fagg GE (1990) Excitatory amino acid receptors in the brain: menbrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11:126-133.

Zalutsky RA and Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619-1624.

Zhuo M, Zhang W, Son H, Mansuy I, Sobel RA, Seidman J, and Kandel ER (1999) A selective role of calcineurin Aa in synaptic depotentiation in hippocampus. Proc. Natl. Acad. Sci. USA 96:4650-5655.

Zucker RS (1989) Short-term synaptic plasticity. Annu. Rev. Neurosci. 12: 13-31.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top