跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗儒
研究生(外文):Tsung-Ju Wu
論文名稱:最大概度之軟性決策序列迴旋碼解碼演算法之實作
論文名稱(外文):Implementation of the Maximum-Likelihood Soft-Decision Sequential Decoding Algorithm for Convolutional Codes
指導教授:韓永祥
指導教授(外文):Yunghsiang S. Han
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:47
中文關鍵詞:迴旋碼最大概度之軟性決策序列迴旋碼解碼演算法最大概度軟性決策序列解碼
外文關鍵詞:Convolutional CodesMLSDAMaximum-LikelihoodSoft-DecisionSequential Decoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,首先介紹最大概度之軟性決策序列旋積碼解碼演算法(MLSDA),這是由韓永祥和陳伯寧老師在1998年發明的解碼演算法。再來我們針對MLSDA依照堆疊空間和時間的限制做模擬,在這裡所有的模擬都是在接收端將所收到的資訊用八階量化處理。還有為了要解決實際的碼比(code rate)所造成在效能上的損失,而得送出非常長的訊息,所以在解碼方面,我們設計一種用區塊解碼方式的MLSDA,來解決此問題。
我們採用(2,1,6), (2,1,8)和(2,1,10)的迴旋碼經過白色高斯雜訊通道(AWGN)的環境做模擬。由模擬結果中,我們發現在信號功率對雜訊功率的比值(SNR)大於5dB時,其平均的運算複雜度,比傳統的Viterbi演算法快非常的多。而且在針對區塊解碼的方法在時間的限制上,我們研究發現在相同的位元錯誤比值(BER)上MLSDA可以比傳統的Viterbi演算法好十倍。

Maximum-likelihood soft-decision sequential decoding algorithm (MLSDA) was presented by Han and Chen. In this thesis, first of all, we present the MLSDA, then study and simulate the MLSDA imposed with stack size limitation, and time limitation. All simulations are based on 8 levels quantization receiver. In order to compensate the loss on signal-to-noise ratio due to reduction on the effective code rate of a convolutional code, a block decoding type MLSDA is designed. Simulation results of (2, 1, 6), (2, 1, 8) and (2, 1, 10) convolutional codes antipodally transmitted over the AWGN channel show that the average of computational effort required by MLSDA is several orders of magnitude less than the Viterbi algorithm when
signal-to-noise ratio is greater than 5 dB. Furthermore,
investigation on the block decoding type MLSDA restricted on time limitation indicates that proposed decoding algorithm has about ten times advantage on average complexity of the Viterbi algorithm at similar bit error rate performance.

1 Introduction
2 Introduction to MLSDA
3 Implementation Considerations and Simulation Results of the MLSDA
4 Conclusions

[1] Y. S. Han and P.-N. Chen, "Maximum-likelihood soft-decision sequential decoding algorithms for convolutional codes,"invited to presented in the Recent Results Session at the 1998 IEEE International Symposium on Information Theory, Cambridge, MA,
USA, August, 1998.
[2] Y. S. Han, P.-N. Chen, and M. P. C. Fossorier, "A generalization of the fano metric and its effect on sequential decoding using a stack," in IEEE Int. Symp. on Information Theory, Lausanne, Switzerland, 2002.
[3] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.
[4] R. M. Fano, "A heuristic discussion of probabilistic decoding," IEEE Trans. Inform. Theory, vol. IT-9, no. 2, pp. 64-73, April 1963.
[5] K. Sh. Zigangirov, "Some sequential decoding procedures," Probl. Peredachi Inf., 2, pp. 13-25, 1966.
[6] F. Jelinek, "A fast sequential decoding algorithm using a stack," IBM J. Res. and Dev., 13, pp. 675?85, November 1969.
[7] G. D. Forney, Jr., "Convolutional codes III: Sequential decoding,?Inf. Control, 25, pp. 267-269, July 1974. 46
[8] Y. S. Han, P.-N. Chen, and H.-B. Wu, "A maximum-likelihood soft-decision sequential decoding algorithm for binary convolutional codes," IEEE Trans. Commun., vol. 50, no. 2, pp. 173-178, February 2002.
[9] J. A. Heller and I. W. Jacobs, "Viterbi decoding for satellite and space communication," IEEE Trans. Commun. Technol., vol. COM-19, no. 5, pp. 835-848, October 1971.
[10] P.-N. Chen, Y. S. Han, and H.-B. Wu, "A variation of berry-esseen theorem and its application to decoding problems," Submit to the IEEE Trans. on Inform. Theory for possible publication.
[11] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications, New York, NY: Plenum Press, 1981.
[12] S. Carlsson, "The DEAP-a double-ended heap to implement double-ended priorify queues," Information Processing Letters, vol. 26, pp. 33-36, September 1987.
[13] I. M. Jacobs, "Sequential decoding for efficient communication from deep space,"IEEE Trans. Commun. Technol., vol. COM-15, no. 4, pp. 492-501, August 1967.
[14] R. J. McEliece and I. M. Onyszchuk, "Truncation effects in Viterbi decoding," in Proc. MILCOM'89, October 1989, pp. 29.3.1-29.3.5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top