跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志嘉
研究生(外文):Chen Chih-Chia
論文名稱:低電壓差動信號Gb/s之傳送器與接收器設計
論文名稱(外文):Design of LVDS Gb/s Transmitter and Receiver
指導教授:許孟烈
指導教授(外文):Sheu Meng-Lieh
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:51
中文關鍵詞:低電壓差動信號傳送器接收器傳收器
外文關鍵詞:LVDStransmitterreceivertransceiver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:477
  • 評分評分:
  • 下載下載:151
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於半導體技術的進步及消費產品市場的趨勢,使得積體電路的設計朝向高速度與低功率發展,輸入/輸出介面在高速度與低功率的電路系統中扮演了極重要的角色。為了達到高速度與低功率的傳輸要求,數位系統可以使用低電壓差動輸出(low voltage differential signal, LVDS)標準所定義的傳輸方式來設計輸入輸出介面。故本論文之重點主要是介紹可以達到高速度與低功率之需求的LVDS傳送器與接收器之設計。另外也在此論文中介紹用來作為測試傳送器與接收器的鎖相迴路之設計。
在本篇論文中所設計之LVDS傳送器與接收器是以HSPICE來驗證電路,使用Cadence軟體來完成佈局,並以台積電之 3.3V 0.35um 1P4M CMOS製程來實現,其傳輸速度可達1Gb/s,電路操作的電源電壓範圍為1.8V~3.6V,操作在1.8V時的功率消耗為15mW,3.6V時的功率消耗為100mW,晶片大小為448um*481um,其中核心面積為240um*263um,傳送器為173um*78um,接收器為149um*41.5um。

In recent years, the advancement of fabrication and circuit design techniques as well as the trend of consumer products impels the integrated circuit designs toward high speed and low power applications. I/O interface plays an important role in achieving high speed and low power integrated circuit designs. Low voltage differential signal (LVDS) I/O standard used for data transmission between digital systems can fulfill the requirements of high speed and low power. In this thesis, the designs of transmitter and receiver for LVDS standard transceiver are investigated. A phase locked loop for testing the transceiver is also introduced.
HSPICE is used to verify functions of LVDS transmitter and receiver. Then the circuits are realized by using TSMC 0.35um 1P4M CMOS process provided by Chip Implementation Center (CIC). The chip can operate functionally at 1Gb/s under a power supply range from 1.8V to 3.6V. The power consumption is 15mW when operating at 1.8V and 100mW at 3.6V. The chip area is 448 x 481 m2, its core size is about 240 x 263 m2 including the transmitter size is 173 x 78 m2 and receiver is 149 x 41.5 m2.

Chinese Abstract.............................................Ⅰ
English Abstract.............................................Ⅱ
Acknowledgement..............................................Ⅲ
Contents.....................................................Ⅳ
Chapter 1 Introduction.......................................1
1.1 Movation.................................................1
1.2 Considerations of High Speed Circuit.....................3
1.2.1 Reflection...........................................3
1.2.2 Crosstalk............................................7
1.2.3 Ground Bounce........................................8
1.3 The LVDS Interface.......................................9
1.4 Thesis Organization......................................11
Chapter 2 Design of Transmitter..............................13
2.1 Introduction.............................................13
2.2 Circuit Design...........................................14
2.2.1 Circuit of transmitter...............................14
2.2.2 Termination of transmitter...........................15
2.2.3 Difference Amplifier.................................16
2.3 Simulation Results.......................................17
2.4 Summary..................................................22
Chapter 3 Design of Receiver.................................23
3.1 Introduction.............................................23
3.2 Circuit Design...........................................24
3.2.1 Parallel path op amp.................................24
3.2.2 The circuit of receiver..............................24
3.2.3 Termination of receiver..............................26
3.3 Simulation Results.......................................26
3.4 Summary..................................................29
Chapter 4 Design of Phase Locked Loop........................30
4.1 Introduction.............................................30
4.2 Circuit Design...........................................31
4.2.1 Phase Frequency Detector (PFD).......................31
4.2.2 Charge Pump..........................................33
4.2.3 Voltage Control Oscillator (VCO).....................35
4.2.4 Divider..............................................36
4.3 Simulation Results.......................................37
4.4 Summary..................................................43
Chapter 5 Measurement Results and Conclusion.................44
5.1 Measurement Results......................................44
5.2 Conclusion...............................................47
References...................................................49
Vita.........................................................51

[1] “IEEE standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI),”IEEE Std. 1596.3, 1996.
[2] Hedberg M.; Haulin T., “I/O family with 200 mV to 500 mV supply voltage,” IEEE International Solid-State Circuits Conference, pp. 340-341, 1997.
[3] A. Boni, et al, “LVDS I/O interface for Gb/s-per-pin operation in 0.35-/spl mu/m CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, No. 4, pp. 706 -711, April 2001.
[4] B. Young, “An SOI CMOS LVDS driver and receiver pair,” IEEE Symposium on VLSI Circuits, pp. 153-154, 2001.
[5] T. Gabara, et al, “LVDS I/O buffers with a controlled reference circuit,” Tenth Annual IEEE International ASIC Conference and Exhibit, pp. 311 -315, 1997.
[6] Jaeseo Lee, et al, “Design and implementation of CMOS LVDS 2.5 Gb/s transmitter and 1.3 Gb/s receiver for optical interconnections,” IEEE International Symposium on Circuits and Systems, vol.4, pp. 702 -705, 2001.
[7] Young, B., “Enhanced LVDS for signaling on the RapidIO/sup TM/ interconnect architecture,” IEEE Conference on Electrical Performance of Electronic Packaging, pp. 17 -20, 2000.
[8] Sergio Franco, “Design with Operational Amplifiers and Analog Integrated Circuits,” 2nd ed., McGRAW-Hill, 1998.
[9] P. R. Gray; P. J. Hurst; S. H. Lewis; R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” 4th ed., Wiley, 2001.
[10] Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design” 2nd ed., Oxford, 2002.
[11] Behzad Razavi, “Monlithic Phase-Locked Loops and Clock Recovery Circuits,” IEEE Press, 1996.
[12] R. Jacob Baker, Harry W. Li, and David E. Boyce, “CMOS Circuit Design, Layout, and Simulation”, IEEE Press, 1998.
[13] Jan M. Rabaey, “Digital Integrated Circuits”, Prentice Hall, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top