跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林永淋
論文名稱:建構於圓規維與KL轉換之自動人眼虹膜辨識系統
論文名稱(外文):Automatic iris recognition system based on divider dimension and KL transform
指導教授:陶金旭陳文雄陳文雄引用關係石勝文石勝文引用關係
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:虹膜辨識
相關次數:
  • 被引用被引用:13
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
生物辨識系統(Biometric Recognition System),利用人體獨一無二的生理特徵,作為密碼或通行證的方式,可省卻隨身攜帶鑰匙的麻煩,或者降低遺忘密碼的風險。它除了可應用在高安全性的出入口管制、自動提款機…等方面,亦可使用於新興的電子商務身分辨識。人類滿周歲後,虹膜不會因年齡或其他因素受到改變,又具有極高的唯一性,兩個人虹膜相同的機率遠比指紋相同的機率低得多﹔同時,人眼虹膜影像擷取的接受度亦較視網膜影像來得高,因此以虹膜作為辨識的特徵應具有極高的應用價值。
Karhunen-Loeve(KL)轉換現今已被廣泛的使用在信號表示、壓縮或分類上,而信號可經由KL轉換產生互不相關(uncorrelated)的特徵,去除掉信號的冗餘性(redundancy)。至於碎形維(fractal dimension)是碎形理論中相當重要的性質,它非常適合用來描述複雜的紋理(texture)。本論文即利用KL轉換和碎形維度兩數學模型來描述虹膜複雜的紋理組織,分別抽取出261 bytes和84 bytes的特徵向量,再配合k-means演算法,組成自動人眼辨識系統。
Traditionally, the methods for personal authentication are based on what a person possesses (e.g., key, ID card, etc.) or what a person knows (e.g., secret password, PIN number, etc.). However, these methods usually have the following problems. For example: keys may be falsified, ID cards may be lost, and passwords and PIN numbers may be forgotten. Accurate and reliable personal authentication (or identity authentication) is becoming more and more urgent to the operation of cybernetic society. In recent years, iris feature of a human eye is receiving growing interests due to its inherence of high uniqueness, high permanence, and high circumvention. An iris may provide a solution by offering a much more discriminating biometric than others such as fingerprint or face recognition.
Fractal dimension is relatively insensitive to an image scaling, and shows a strong correlation with human judgment of surface roughness. A commonly used method for determining the fractal dimension estimate of a fractal curve in the plane is the divider dimension. KL transform generates mutually uncorrelated and orthogonal features in order to avoid information redundancies.
In this thesis, an automatic personal authentication technique using a human iris image is presented. Two approaches to extract iris feature are proposed. First, we apply the divider dimension estimate algorithm in 1-D wavelet transform domain to analyze the texture of a human iris and extract its unique feature codes. Second, we employ the KL transform to extract the local features of an iris image. Finally, the experimental results are given.
摘要…………………………………………………………………….…..i
Abstract…………………………………………………………….………ii
誌謝………………………………………………………………….……iii
圖目錄………………………………………………………………..…..vii
表目錄……………………………………………………………...…….xii
第一章 緒論………………………………………………………..……..1
1.1生物辨識系統之價值…………………………………..…….1
1.2論文研究之動機………………………………………..…….3
1.3論文大綱………………………………………………..…….5
第二章 生物辨識技術之回顧……………………………………………7
2.1基本辨識系統架構…………………………………………...7
2.2以生物特徵為基礎之生物辨識技術………………………...7
2.3幾種重要生物辨識技術……………………………………...9
2.4 K平均(K-means)演算法………………………..………..24
2.5辨識系統之評估法則………………………………………25
第三章 人眼虹膜辨識技術之回顧………………………………….….28
3.1 前言………………………………………………………...28
3.2 以Gabor wavelet轉換為基礎之Daugman虹膜辨識系統.29
3.3 Wildes虹膜辨識系統……………………………………….36
3.4 Zhu、Tan與Wang之虹膜辨識系統…………………….….41
第四章 碎形、凌波轉換與KL轉換理論之回顧………..………………46
4.1碎形………………………………………………………….46
4.2凌波轉換…………………………………………………….68
4.3 Karhunen-Loeve轉換……………………………………….73
第五章 以圓規維與KL轉換為基礎之自動人眼虹膜辨識系統………79
5.1概述………………………………………………………….79
5.2以圓規維為特徵之虹膜辨識系統………………………….80
5.3以Karhunen-Loeve轉換(KLT)為特徵之虹膜辨識系統….81
5.4 AIRS系統之整體架構……………………………………..82
5.5虹膜影像擷取模組………………………………………….83
5.6虹膜影像前處理模組……………………………………….87
5.7虹膜影像之圓規維特徵萃取模組………………………….95
5.8虹膜影像之KL轉換特徵萃取模組………………………...98
5.9型樣識別模組……………………………………………...102
第六章 AIRS系統實作與實驗結果……………………………….….103
6.1圓規維演算法……………………………………………..105
6.2 KL轉換演算法……………………………………………107
6.3系統性能…………………………………………………..108
第七章 結論……………………………………………………………111
參考文獻…………………………………………………………….….113
[1] J. G. Daugman, “High Confidence Visual Recognition of Persons by a Test of Statistical Independence,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, No. 11, pp. 1148-1161, Nov. 1993.
[2] J. G. Daugman, “High Confidence Recognition of Persons by Iris Patterns,” IEEE Conference on Security Technology, pp. 254-263, 2001.
[3] R. P. Wildes, J. C. Asmuth, G. L. Green, S. C. Hsu, R. J. Kolczynski, J. R. Matey, S. E. McBride, “A Machine-Vision System for Iris Recognition,” Machine Vision and Applications, pp. 1-8, Spr. 1996.
[4] G. O. Williams, “Iris Recognition Technology,” IEEE Aerospace and Electronics Systems Magazine, vol. 12, pp. 23-29, Apr. 1997.
[5] R. S. Reillo, C. S. Avila, and A. G. Marcos, “Improving Access Control Security Using Iris Identification,” IEEE Conference on Security Technology, pp. 56-59, 2000.
[6] S. Lim, K. Lee, O. Byeon, and T. Kim, “Efficent Iris Recognition through Improvement of Feature Vector and Classifier,” ETRI Journal, vol. 23, No. 2, pp. 61-70, Jun. 2001.
[7] Y. Zhu, T. Tan, and Y. Wang, “Biometric Personal Identification based on Iris Patterns,” Pattern Recognition, vol. 2, pp. 801-804, 2000.
[8] W. W. Boles, and B. Boashash, “A Human Identification Technique Using Image of the Iris and Wavelet Transform,” IEEE Trans. on Signal Processing, vol. 46, No. 4, pp. 1185-1188, Apr. 1998.
[9] R. S. Germain, A. Califano, and S. Colville, “Fingerprint Matching Using Transformation Parameter Clustering,” IEEE Computational Science and Engineering, vol. 4, pp. 42-49, Oct.-Dec. 1997.
[10]W. Shen, M. Surette, and R. Khanna, “Evaluation of Automated Biometrics-Based Identification and Verification Systems,” Proceedings of the IEEE, vol. 85, pp. 1464-1478, Sep. 1997.
[11]J. P. Campbell, “Speaker Recognition: A Tutorial,” Proceedings of the IEEE, vol. 85, No. 9, pp. 1437-1462, Sep. 1997.
[12]F. Prokoski, “History, Current Status, and Future of Infrared Identification,” IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications, pp. 5-14, 2000.
[13]N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, “A Real-Time Matching System for Large Fingerprint Databases,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, pp. 799-813, Aug. 1996.
[14] B. Miller, “Vital Signs of Identity,” IEEE Spectrum, vol. 31, pp. 22-30, Feb. 1994.
[15]A. K. Jain, and R. Bolle and S. Pankanti, Biometrics Personal Identification in Networked Society, Kluwer Academic Publishers, 1998.
[16]N. Sarkar, and B. B. Chaudhuri, “An Efficient Differental Box-Counting Approach to Compute Fractal Dimension of Image,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 24, No. 1, pp. 115-120, Jan. 1994.
[17] S. Sufei, Jing’ao, and C. Anni, “Fractal based Texture Analysis for Retrieval of Image Data,” Communications, APCC/OECC ''99. Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and Communications Conference, vol. 2, pp. 845-48, 1999.
[18]C. C. Chen, J. S. Daponte, and M. D. Fox, “Fractal Feature Analysis and Classification in Medical Imaging,” IEEE Trans. on Medical Imaging, vol. 8, pp. 133-142, Jun. 1989.
[19]J. You, S. Hungnahally, and A. Sattar, “Fractional Discrimination for Texture Image Segmentation,” Proceedings, International Conference on Image Processing, vol. 1, pp. 220-223, 1997.
[20]A. Z. Kouzani, F. He, and K. Sammut, “Fractal Face Representation and Recognition,” Proceedings, International Conference on Image Processing, vol. 1, pp. 220-223, 1997.
[21]Y. Y. Tang, B. F. Li, H. Ma, and J. Liu, “Ring-Projection-Wavelet-Fractal Signatures: A Novel Approach to Feature Extraction,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 1130-1134, Aug. 1998.
[22]Y. Y. Tang and Y. Tao, “Feature Extraction by Fractal Dimensions,” ICDAR ''99. on Document Analysis and Recognition, pp. 217-220, 1999.
[23]Y. Lin and Y. Li, “Image Feature Extraction and Segmentation Using Fractal Dimension,” ICICS on Information, Communications and Signal Processing, vol. 2, pp. 975-979, 1997.
[24]Y. Tao, E. C M. Lam, and Y. Y. Tang, “Extraction of Fractal Feature for Pattern Recognition,” Pattern Recognition, vol. 2, pp. 527-530, 2000.
[25]P. S Addison, Fractal and Chaos an Illustrated Course, Institute of Physics Publishing Ltd., 1997.
[26]J. Feder, Fractals, Plenum Press, 1989.
[27]R. R. Coifman, and N. Saito, “The Local Karhunen-Loeve Bases,” IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 129-132, 1996.
[28]M. Fleury, A. C. Downton, and A. F. Cleark, “Karhunen-Loeve Transform: An Exercise in Simple Image Processing Parallel Pipelines,” Proc. EuroPar''97 Conference: Lecture Notes in Computer Science, vol. 1300, pp.815-819, Spr. 1997.
[29]C. Ta, C. T. Chiang, and Y. H. Chen, “Efficient KLT based on Overlapped Subframes for Speaker Identification,” IEEE Third Workshop on Signal Processing Advances in Wireless Communications, pp. 376-379, 2000.
[30]A. Levy and M. Lindenbaum, “Sequential Karhunen-Loeve basis Extraction and Its Application to Images,” IEEE Trans. on Image Processing, vol. 9, pp. 1371-1374, Aug. 2000.
[31]S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press Ltd., 1998.
[32]吳成柯、戴善榮、程湘君和雲立實譯,“數位影像處理”,儒林圖書,1996。
[33]繆紹網編著,“數位影像處理活用-Matlab”,全華圖書,1999。
[34]袁上元著,“建構於碎形維之自動人眼虹膜辨識系統”,逢甲大學電機工程研究所碩士論文,2000。
[35]陳志堅和黃俊豪著,“大量語者不特定語句環境下語者辨識系統之特徵設計”,國立中山大學電機工程學系研究所碩士論文,中華民國89年。
[36]張兆旭譯,“Fractal導論”,松崗。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top