跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游宛真
研究生(外文):Wan-Chen Yu
論文名稱:非線性波與透水潛堤的交互作用
論文名稱(外文):he Interaction of Nonlinear Waves with Submerged Porous Breakwaters
指導教授:吳永照
指導教授(外文):Yung-Chao Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:1
中文關鍵詞:透水潛堤邊界元素法有限差分法
外文關鍵詞:submerged Porous Breakwatersboundary element methodfinite difference method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:2
本文以邊界元素法(BEM)發展出一直推式非線性波之數值造波水槽,在水平底床置入一透水矩形潛堤,以有限差分法(FDM)來模擬潛堤內流體的運動,並於水槽末端加入一假想海綿來吸收入射波。模式中以Euler-Largrangian來描述自由水面的運動,使用曲線近似法(Cubic Spline)求得水面點各種物理量之切線方向一階和二階的微分值,再利用Taylor級數展開法求得下一時刻的水位資料;此外,在潛堤內利用有限差分法(壓力修正法)配合交錯網格系統來求得潛堤交界處下一時刻所需的邊界數值。模式中亦使用了合適條件(Compatibility Condition)及平滑技巧(Smoothing Technique)來增加模式的穩定性,藉以瞭解非線性波與透水潛堤間的交互作用。
在本文研究中,給定一相同尺寸的潛堤,以改變入射波的條件來探討波浪對透過係數的影響。首先數值結果與驗證之實驗數值結果比較,雖然在某些方面有些差異性,但是趨勢是很相似的,因此證明本數值模式的正確性。在最後的結果發現,波浪尖銳度越大者,則透射率就越小,在相對水深kh=1.0-2.0間皆可明顯的觀察到;由結果也可觀察到在相同的波浪尖銳度下,相對水深越大者,則透射率就越大,因此可得此透水潛堤對於波浪尖銳度大且相對水深小者有較良好的消波效果。
Based on the boundary element method, a numerical model for the simulation of nonlinear wavefields generated by a piston-type wavemaker has been developed. A spongy layer is set in front of the wall at the end of the tank to absorb the incoming wave energy. In the present model, a time-steping largrangian technique is employed to track the free surface movement. The associated velocity of the free surface are computed by second order numerical integrated in time. The finite difference method and a staggered grid are applied to computing boundary values of the submerged porous breakwater. The compatibility condition and the smoothing technique are applied to increasing the stability of the numerical model.
In this study, the numerical model is applied to study the deformation of nonlinear wave propagation over a submerged porous breakwater. The accuracy of the present numerical model is proved by comparing results of the present numerical model and the laboratory experiment. FFT is applied to detect the wave energy of harmonic components in different locations of the numerical tank. The numerical results show that the fully nonlinear analysis is much different to the linear analysis, which proves the important of fully nonlinear analysis. According to the comparison of the numerical results, the transmission coefficient decreases as the wave steepness increases at the same water depth. The results also show that the transmission coefficient increases as the water depth decreases. For this reason, the energy loss rate is better when the wave steepness is higher and the water depth is lower. In addition, the results also show that the transmission coefficient is affected by the porosity. The transmission coefficient decreases as the porosity increases.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vii
符號表 viii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究目的 4
1-4 研究方法 4
第二章 基本理論 6
2-1 純流體區 6
2-2 透水潛堤區 6
2-3 邊界條件 7
第三章 數值方法 11
3-1 邊界元素法 11
3-2 壓力修正法 15
3-3 初始條件 19
第四章 結果與討論 20
4-1 造波模式之驗證模式 20
4-2 波浪通過透水潛堤之驗證模式 21
4-3 波浪受透水潛堤作用之模擬 22
第五章 結論與建議 26
5-1 結論 26
5-2 建議 27
參考文獻 29
附錄A 自由水面之模擬 54
附錄B 曲線近似法 58
附錄C 轉角處的合適條件 62
參考文獻
1. Aminti, P. and L. Franco, “Wave Overtopping on Rubble Mound Breakwater”, Proc. Coastal Eng. Conf., pp.770-781, 1988.
2. Arbhabhiramar, A. M. and A. A. Dinoy, “Friction Factor and Reynolds Number in Porous Media Flow”, Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY6, pp.901-911,1973.
3. Beji, S. and J. A. Battjes, “Experimental investigation of wave propagation over a bar”, Coastal Eng., Vol. 19, pp. 151-162, 1993.
4. Beji, S. and J. A. Battjes, “Numerical simulation of nonlinear wave propagation over a bar”, Coastal Eng., Vol. 23, pp. 1-16, 1994.
5. Biesel, F., “Radiating second-order phenomena in gravity waves” 10th Congress IAHR, Paper I. 27, 1963.
6. Brorsen, M. and Larsen, J., “Source generation of nonlinear gravity waves with the boundary integral equation method”, Coastal Eng.,Vol 11, pp. 93-113, 1987.
7. Chou, C. R., and Shin, R. S., “Generation and deformation of solitary waves”, China Ocean Eng., Vol. 10, No. 4, pp. 419-432, 1996.
8. Chou, C. R., and Shin, R. S., “Numerical generation and propagation of periodical waves in time domain”, Coastal Eng. in Japan, Vol. 39, No. 2, pp. 111-127, 1996.
9. Darlymple, R. A. and Kirby, J. T., “Water waves over ripples”, J. Wtrwy., Port, Coast. And Oc. Engng., ASCE, Vol. 112, pp. 309-319, 1985.
10. Dattatri, J., Raman, H. and N. J. Shankar, “Performance Characteristics of Submerged Breakwaters”, Proc. ICCE, pp.2153-2171, 1978.
11. Dold, J. W., and Perpgrine D. H., “Steep unsteady water waves : An efficient computational scheme”, Proc. 19th Intl. Conf. On Coastal Eng., pp. 955-967, 1984.
12. Faltinsen, O. M., “A numerical nonlinear method of sloshing in tanks with two-dimensional flow”, J. of Ship Research, Vol. 22, No. 3, pp.193-202, 1978.
13. Faltinsen, O. M., “Numerical solution of transient nonlinear free surface motion outside or inside moving bodies”, Proc. 2nd Conf. on Num. Ship Hydro., pp. 347-357, 1977.
14. Fenton, J. D., “a Fifth-order Stokes Theory for Steady Waves”, Journal of Waterways and Harbors Division, ASCE, Vol.111, pp.216-234, 1985.
15. Greenberg, M. D., “Application of Green’s Function in Science and Engineering”, Prentice-Hall, 1971.
16. Iwasaki, T. and A. Numata, “Experimental Studies on Wave Trasmission of a Permeable Breakwater Constructed by Artifical Blocks”, Coastal Eng. Japan, Vol. 13, pp.25-29, 1970.
17. Jolas, P., “Passage de la Houle sur Seuil”, Houille Blanche, 2, pp. 148-152, 1960.
18. Lee, C. P., “Wave Interaction with Permeable Structures”, Ph. D. thesis, Oregon State University, Corvallis, OR, 1987.
19. Lee, J. J., “Waves induced oscillation in harbours of arbitrary geometry”, J. Fluid Mech., Vol. 45, pp. 375-394, 1971.
20. Liu, P. L.-F., and Abbaspour, M., “Wave scattering by a rigid thin barrier”, J. Wtrwy., Port, Coast. and Oc. Eng., ASCE, Vol 108, pp. 1497-1504, 1982.
21. Losada, I. J., M. D. Patterson and M. A. Losada, “Harmonic generation past a Submerged Porous Step”, Coastal Eng., Vol. 31, pp.281-304, 1997.
22. Madsen, O. S., “Waves generated by a piston-type wavemaker”, Proc. 12th Coastal Eng. Conf., pp. 589-607, 1970.
23. Madsen, O. S., “Wave Transmission through Porous Structures”, J. Watway., Port, Coastal, Ocean Eng. Div., ASCE, Vol. 100, pp.169-188, 1974.
24. Madsen, O. S. and S. M. White, “Reflection and Transmission Characteristics of Porous Rubble-Mound Breakwaters”, Miscellaneous Report No. 76-5, U. S. Army, Coastal Eng. Research Center, 1976.
25. McDougal, W. G., “State of the Art Practice in Coastal Engineering”, National Cheng Kung University, pp.10.25-10.28, 1993.
26. Nakayama, T., “Boundary element analysis of nonlinear water wave problem”, Int. J. for Numerical Method in Eng., No. 19, pp. 953-970, 1983.
27. Ohyama, T., and Nadaoka, K., “Development of a numerical wave tank for analysis of nonlinear and irregular wave field” Fluid Dynamics Research, 8, pp. 231-251, 1991.
28. Ohyama, T., and Nadaoka, K., “Transformation of a nonlinear waves train passing over a submerged shelf without breaking”, Coastal Eng., Vol. 24, pp. 1-22, 1994.
29. Oumeraci, H. and H. W. Partenscky, “Wave-Induced Pore Pressure in Rubble Mound Breakwater”, Proc. Coastal Eng. Conf., pp.1334-1347, 1990.
30. Patankar, S. V. and D. B. Spalding, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
31. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere, New York, 1980.
32. Rojanakamthorn, S.,Isobe, M. and Watanabe, A., “A Mathematical Model of Wave Transformation over a Submerged Breakwater”, Coastal Eng. Japan, Vol.32, No.2, pp.209-234,1989.
33. Sollitt, C. K. and R. H. Cross, “Wave Transmission through Permeable Breakwaters”, Proc. 13th Coastal Eng. Conf., Vol. III, pp.1827-1846,1972.
34. Sulisz, W., “Wave Reflection and Transmission at Permeable Breakwaters of Arbitrary Cross Section”, Coastal Eng., Vol.9, pp.371-386, 1985.
35. Tang, C. J., Plate, V. C. and Landweber, L., “Viscous effects on propagation and reflection of solitary waves in shallow channels”, Journal of Computation Physics, Vol. 88, No. 1, pp. 86-113, 1990.
36. Ward, J. C., “Turbulent Flow in Porous Media”, J. Hydraulic Div., HY5, pp.4019-4021, 1964.
37. Yang, S. A. and Chwang., A. T., “An experimental study of nonlinear wave produccd by an accelerating plate”, Physics Fluid A 4(11), pp. 2456-2465.
38. Yeung, R. W., “A hybrid integral equation method for time-harmonic free-surface flows”, 1st Inter. Conf. on Ship Hydros., pp. 581-607, 1975.
39. Young, I. R., “Water transformation over coastal reefs”, J. Geophys. Res. 94, pp. 9779-9789, 1989.
40. 藍元志, “波浪與可透水結構互相作用之非線性分析”, 國立成功大學水利及海洋工程研究所碩士論文, 1992.
41. 李兆芳, 劉正琪, “波浪透過透水潛堤之新理論解析”, 第十七屆海洋工程研討會論文集, 第593-606頁,1995.
42. 李兆芳, 黃玄, “波浪與潛式透水結構物互相作用分析”, 第十八屆海洋工程研討會論文集, 第273-282頁,1996.
43. 董志明, 黃清哲, “不同潛堤形狀對波浪變形之影響”, 第十九屆海洋工程研討會論文集, 第212-219頁, 1997.
44. 蔡文彬, “非線性波與不透水潛堤的交互作用”, 國立交通大學土木工程研究所碩士論文,2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top