跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許至璁
研究生(外文):Chih-Tsung Hsu
論文名稱:二維有限解析法明渠水理與輸砂模式之研發與應用
論文名稱(外文):Development and Application of 2-D Finite Analytic Model of Water and Sediment Movements in Open Channel
指導教授:葉克家葉克家引用關係
指導教授(外文):Keh-Chia Yeh
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:195
中文關鍵詞:水深平均二維模式顯式有限解析法非耦合演算非正交貼壁座標系統紊流模式非均勻沈滓懸浮載濃度剖面沈滓交換速率
外文關鍵詞:depth-averaged 2-D modelexplicit finite analytic methoduncoupled algorithmnon-orthogonal body-fitted coordinates systemturbulence modelnon-uniform sedimentsuspended sediment concentration profilesediment exchange rate
相關次數:
  • 被引用被引用:24
  • 點閱點閱:737
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:5
對於不規則天然渠道之流場及底床沖淤而言,均存在沿程縱方向以及橫斷面方向之變化,如選擇水深平均二維模式,除可模擬縱向長距離之流場特性外,亦可得到橫斷面方向之水理與底床沖淤變化之資訊。本研究之目的即在發展一水深平均二維水理及輸砂數值模式,其主要特點有:(1)考慮天然河道不規則之邊壁條件,建立非正交貼壁座標系統,推導位於該座標系統上之水深平均水理及輸砂控制方程式,並根據流場幾何特性,利用不同格點產生法建構計算格點;(2)針對台灣河川坡陡流急之特性,水理部分考慮移流作用的影響,採用顯式有限解析法進行水理控制方程式之離散化,此數值方法主要係用以求解雙曲線型偏微分方程式,因此適用於一般常見之明渠流;(3)輸砂模式採用與水理模式非耦合演算的計算方式,並藉由修正各粒徑沈滓起動剪應力,以考慮非均勻沉滓間相互的影響;此外,考慮懸浮載傳輸所具有之移流特性,將懸浮載與河床載分開計算,探討原應用於具垂直維度模式之底床附近河床載與懸浮載間沈滓交換速率的估算方式,並參考van Rijn對懸浮載濃度剖面之研究成果提出適用於水深平均模式之沈滓交換速率估算方法,稱之為積分法,期能更精確地模擬渠底沖淤機制。
本研究將所發展之模式應用至多種定床流場以及動床渠道之沖淤模擬,並引用試驗資料來加以驗證。就水理模式部分,分析之案例包括:定量流迴水、變量流洪水波傳遞、移流作用顯著且存在分離流與環流之滯洪區流場及丁壩流場、以及超臨界流與亞臨界流同時存在或交替發生且自由水面具有大曲率變化之潰壩流場及水躍現象等。就輸砂模式部分,首先檢驗積分法估算沈滓交換速率之正確性,藉由一清水沖刷案例,模擬其沈滓濃度剖面發展的過程,所得結果與試驗資料相近,證實了積分法配合適當的濃度剖面可以彌補模式在水深平均過程中所失去之垂直方向沈滓沈降與擴散作用的影響。此外,為進一步瞭解輸砂模式對於渠道沖淤及河床質粒徑組成改變之模擬能力,分別就均勻與非均勻沈滓條件下之渠道沖刷與淤積案例,以及更複雜之沖淤交替案例進行模擬與比較分析。根據數模結果,顯式有限解析法適用於移流作用顯著之明渠流場之模擬,而積分法考慮了水深方向沈滓濃度分佈對於河床載與懸浮載間沈滓交換速率之影響,因而改進了水深平均模式本質上之限制並提升預測渠道沖淤之精度。未來可針對台灣各河川中具有足夠現場資料者,進行模式內各輸砂經驗式之參數檢定、沖淤模擬及必要之改良,以增進本模式之實用價值。
For irregular natural channels, there exist longitudinal and lateral variations in flow field and channel bed evolution. A depth-averaged horizontal 2-D model has the capability of simulating the long-distanced longitudinal variations of flow characteristics, as well as the lateral variations of channel cross sections. The purpose of the study is to develop a depth-averaged horizontal 2-D hydraulic and sediment transport model. The main special features of the model include: (1) Considering the irregular cross-sectional geometry of natural channel, a non-orthogonal body-fitted coordinates system is constructed, and the depth-averaged hydraulic and sediment transport equations are derived on the coordinates. The computational grids are then generated by one of the grid generation methods, which is suitable for the flow geometry characteristics. (2) Aiming at the steep channel slope and high flow velocity of Taiwan’s rivers, the hydraulic model considers the dominating convection effects. The explicit finite analytic method is adopted to discretize the governing equations of flow. This numerical method is suitable for the hyperbolic-type partial differential equation; thus it is expected to be applicable to the general open channel flows. (3) The sediment model is uncoupled with the hydraulic model. The incipient shear stress for individual sediment particle is modified to account for the interaction among nonuniform sediments. In view of the strong convection character of suspended load, the suspended load and bed-load transport are separately computed. In addition, the method for estimating the sediment exchange rate near bed between suspended load and bed load in the vertical 2-D models is examined to see whether it is still applicable to depth-averaged horizontal 2-D models. By utilizing the sediment concentration profile developed by van Rijn, a new approach, which is suitable for use in the depth-averaged models and named integral approach, for estimating the sediment exchange rate near the channel bed is proposed to make more accurate prediction of channel scour or deposition mechanism.
In this study, the proposed model is applied to various fixed-bed flow and mobile-bed aggradation/degradation simulations. Experimental data are used to verify the applicability and accuracy of the model. For the hydraulic model, case studies include: steady backwater flow, unsteady floodwater flow, flows with strong convection and with separation and circulation in a storage basin and in a flume with Groyne, and dam-break and hydraulic jump flows with sub-critical and supercritical regimes occurring simultaneously and sequentially, and with strong curvature of the free surface. For the sediment transport model, the accuracy of the integral approach for estimating the sediment exchange rate is first verified by a scouring experiment with clear water entering in the inlet. The predicted sediment concentration profiles are compared with the experimental measurements and generally good agreements are obtained. This fact shows that the integral approach with appropriate concentration profiles could compensate for the missing mechanism of vertical settling and diffusion of sediment in the depth-averaged model. In addition, for further understanding of its capability for predicting the channel bed evolution and the change of composition of bed material, the model is applied to simulate the cases with aggrading and degrading beds, respectively, with uniform or nonuniform sediment, and the more complex cases with aggrading and degrading bed alternatively. Comparisons against the experimental data show that the explicit finite analytic method is applicable to the open channel flows with strong convection, and the newly-proposed integral approach, which considers the non-equilibrium sediment concentration profiles on the exchange rate between suspended load and bed load, improves the inherent limitation of the depth-averaged model and increases the accuracy of predicting the channel bed evolution. In future, on the basis of the available field data of Taiwan’s rivers, the model parameters can be calibrated, and numerical simulations and necessary modifications of the model can proceed to enhance the model’s practical value.
目錄
誌謝 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
符號表 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 水理數值模式 2
1.2.2 輸砂數值模式 4
1.3 研究目的 10
1.4 研究方法 11
1.5 章節介紹 11
第二章 水理及輸砂理論 13
2.1 水理控制方程式 13
2.1.1 水理控制方程式 13
2.1.2 非正交曲線座標系統控制方程式 14
2.1.3 時間平均(Time-Averaged)控制方程式 15
2.1.4 水深平均(Depth-Averaged)控制方程式 15
2.1.5 有效剪應力 18
2.2 輸砂控制方程式 18
2.2.1 沈滓傳輸型態 18
2.2.2 懸浮載質量守衡方程式 19
2.2.3 作用層質量守衡方程式 20
2.2.4 整體河床質量守衡方程式 21
2.2.5 輸砂輔助關係式 22
2.2.5.1 河床載通量( ) 22
2.2.5.2 非均勻沈滓與啟動剪應力條件 23
2.2.5.3 參考濃度( ) 24
2.2.5.4 作用層厚度( ) 25
2.2.5.5 作用層源( ) 26
2.3 沈滓交換速率( ) 26
2.3.1 文獻回顧-估算沈滓交換速率的方法 26
2.3.2 積分法(Integral Approach) 27
2.3.2.1 平衡濃度剖面( ) 27
2.3.2.2 水體承載濃度剖面( ) 29
2.3.2.3 沈滓交換速率( ) - 積分法 29
第三章 水理模式數值架構 31
3.1 齊次雙曲線型方程式 31
3.2 混合型方程式 32
3.3 水理控制方程式之離散化 32
3.4 啟始函數 34
3.5 水理模式之計算流程 35
3.6 顯式有限解析法之精確度 35
3.7 穩定性分析 37
3.8 水理邊界條件 39
第四章 輸砂模式數值架構 41
4.1 輸砂結合演算法 41
4.2 輸砂控制方程式之離散化 41
4.2.1 河床載質量守恆方程式之離散化 41
4.2.2 懸浮載質量守恆方程式之離散化 41
4.3 輸砂數值解析法(Newton-Raphson法) 43
第五章 輔助模組介紹與模式流程 44
5.1 格點產生法 44
5.2 初始底床高程資料的建立 44
5.3 內插法 45
5.4 紊流模式 46
5.4.1 兩方程式紊流模式 48
5.4.2 壁函數(Wall Function) 49
5.4.3 紊流數值模式(隱式有限解析法) 50
5.5 模式演算流程 53
第六章 淺水波流場模擬 56
6.1 定量流迴水模擬 56
6.2 變量流之模擬 56
6.3 滯洪區內分離流與環流模擬 57
6.4 潰壩流場模擬 58
6.4.1 全斷面潰壩 58
6.4.2 局部潰壩 59
6.5 丁壩(Groyne)流場模擬 60
6.6 側向滯洪池流場模擬 61
6.7 水躍現象模擬 62
6.8 結語 63
第七章 渠道沖淤模擬 64
7.1 清水沖刷形成之濃度剖面發展過程 65
7.2 渠道之沖刷與淤積 66
7.2.1 沖刷案例 67
7.2.1.1 均勻沈滓案例 68
7.2.1.2 非均勻沈滓案例 69
7.2.2 淤積案例 70
7.3 沖淤交替案例 71
第八章 結論與建議 77
8.1 模式特點 77
8.2 結論 78
8.3 建議 79
參考文獻 82
附錄A 非正交水深平均水流控制方程式 92
附錄B 輸砂控制方程式 97
附錄C 二維不規則四邊形雙線性內插演算法 99
附錄D 修正Shepard’s法 102
作者簡介 175
參考文獻
Aguirre-Pe, J., Quisca, S., and Plachco, F.P. (1995). "Tests and numerical one-dimensional modelling of a high-viscosity fluid dam-break wave." J. Hydr. Res., 33(1), 17-26.
Alam, M.M., and Bhuiyan, M.A. (1995). "Collocation finite-element simulation of dam-break flows." J. Hydr. Engrg., ASCE, 121(2), 118-128.
Alcrudo, F., Garcia-Navarro, P., and Saviron, J.M. (1992). "Flux difference splitting 1-D open channel flow equations." Int. J. Num. Meths Fluids, 14, 1009-1018.
Aureli, F., Mignosa, P., and Tomirotti, M. (2000). "Numerical simulation and experimental verification of dam-break flow with shocks." J. Hydr. Res., 38(3), 197-206.
Bagnold, R.A. (1973). "The nature of saltation and of bed-load transport in water." Proc. Royal Soc., London, England, A 332, 473-504.
Baines, M.J., Maffio, A., and Di Filippo, A. (1992). "Unsteady 1-D flows with steep waves in plant channels: the use of Roe’s upwind TVD difference scheme." Adv. Water Resource, 15, 89-94.
Bellos, C.V., Soulis, J.V., and Sakkas, J.G. (1992). "Experimental investigation of two-dimensional dam-break induced flows." J. Hydr. Res., 30(1), 47-63.
Bengtsson, L. (1978). "Wind induced circulation in lakes." Nordic Hydrology, 9(2), Stockholm, Sweden, 75-94.
Benque, J.P., Cunge, J.A., Feuillet, J., Hauguel, A., and Holly, F.M. Jr. (1982). "New method for tidal current computation." J. Waterway, Port, Coastal and Ocean Div., ASCE, 108(WW3), 396-417.
Berger, R.C., and Stockstill, R.L. (1995). "Finite-element model for high-velocity channels." J. Hydr. Engrg., ASCE, 121(10), 710-716.
Bhallamudi, S.M., and Chaudhry, M.H. (1991). "Numerical modeling of aggradation and degradation in alluvial channels." J. Hydr. Engrg., ASCE, 117(9), 1145-1164.
Bhallamudi, S.M., and Chaudhry, M.H. (1992). "Computation of flows in open-channel transitions." J. Hydr. Res., 30(1), 77-95.
Borah, D.K., Alonso, C.V., and Prasad, S.H. (1982). "Routing graded sediments in streams: formulations." J. Hydr. Div., ASCE, 108(HY12), 1486-1505.
Borthwick, A.G.L., and Akponasa, G.A. (1997). "Reservoir flow prediction by contravariant shallow water equations." J. Hydr. Engrg., ASCE, 123(5), 432-439.
Boussinesq, J. (1877). "Essai sur la theorie des eaux courantes." Mem. Acad. Sci., Paris, 23.
Bradford, S.C., and Sanders, B.F. (2002). "Finite-volume model for shallow-water flooding of arbitrary topography." J. Hydr. Engrg., ASCE, 128(3), 289-298.
Brooks, N.H. (1963). "Calculation of suspended load discharge from velocity concentration parameters." Proc. Federal interagency sedimentation conference, U.S. Department of Agriculture, Miscellaneous Publication No. 970.
Busnelli, M.M., Stelling, G.S., and Larcher, M. (2001). "Numerical morphological modeling of open-check dams." J. Hydr. Engrg., ASCE, 127(2), 105-114.
Cao, Z. (1997a). "Turbulent bursting-based sediment entrainment function." J. Hydr. Engrg., ASCE, 123(3), 233-236.
Cao, Z. (1997b). "Turbulent bursting-based formulation of suspended sediment transport capacity." Environmental and coastal hydraulics: Protecting the aquatic habitat, Proc., 27th IAHR Congr. at San Francisco, Theme B, Vol. 2, S.Y. Wang Sam et al., eds., ASCE Press, New York, 1215-1220.
Cao, Z. (1999). "Equilibrium near-bed concentration of suspended sediment." J. Hydr. Engrg., ASCE, 125(12), 1270-1278.
Cao, Z., Zhang, X., and Xi, H. (1996). "Turbulent bursting-based diffusion model for suspended sediment in open channel flows." J. Hydr. Res., 34(4), 457-472.
Celik, I., and Rodi, W. (1984). "A deposition-entrainment model for suspended sediment transport." Report SFB210/T/6, Univ. Karlsruhe, Federal Republic of Germany
Celik, I., and Rodi, W. (1988). "Modeling suspended sediment transport in nonequilibrium situations." J. Hydr. Engrg., ASCE, 114(10), 1157-1191.
Celik, I., and Rodi, W. (1991). "Suspended sediment-transport capacity for open channel flow." J. Hydr. Engrg., ASCE, 117(2), 191-204.
Chang, S.Y., and Yen, C.L. (2002). "Simulation of bed-load dispersion process." J. Hydr. Engrg., ASCE, 128(3), 331-342.
Chapman, R.D. (1979). "Computational aerodynamics development and outlook." AIAA J., 17, 1293.
Chapman, R.S., and Kuo, C.Y. (1985). "Application of the two-equation turbulence model to a two-dimensional, steady, free surface flow problem with separation." Int. J. Num. Meths Fluids, 5, 257-268.
Chen, C.J., and Chen, H.C. (1984a). "Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equation." J. Comput. Phys., 53(2), 209-226.
Chen, C.J., and Chen, H.C. (1984b). "Development of finite analytic numerical method for unsteady three-dimensional Navier-Stokes equations: Computation of internal flows." Am. Soc. Mech. Eng., FED(14), 159-165.
Chen, C.J., and Choi, S.K. (1990). "The finite analytic method and its application-laminar and turbulent flows past two dimensional and axisymmetric bodies." IIHR Report No. 344-I, Iowa Institute of Hydraulic Research, University of Iowa.
Chen, C.J., and Jaw, S.Y. (1995). "Fundamentals of turbulence modeling." Florida A & M Univ., Florida, USA.
Chen, C.L. (1980). "Laboratory verification of a dam-break flood model." J. Hydr. Div., 106(HY4), 535-556.
Chiu, C.L., Jin, W., and Chen, Y.C. (2000). "Mathematical models of distribution of sediment concentration." J. Hydr. Engrg., 126(1), 16-23.
Cunge, J.A. (1975). "Rapidly varied flow in power and pumping canals in unsteady flow in open channel." Water Resources Publications, Fort Collins, CO, Chap. 14.
Cunge, J.A., Holly, F.M., and Verway, A. (1980). "Practical aspects of computational river hydraulics." Pitman, London.
Dai, W. (1994). "Numerical solutions of unsteady Navier-Stokes equations using explicit finite analytic scheme." Ph. D. Thesis, Department of Applied Mathematics, The University of Iowa.
DHI, (1992). "User guides and reference manuals for MIKE11 model." Danish Hydraulic Institute Manuals.
DHI, (1993). "User guides and reference manuals for MIKE21 model." Danish Hydraulic Institute Manuals.
Durst, F., and Rastogi, A.K. (1979). "Theoretical and experimental investigations of turbulent flows with separation." Proc., Int. Symp. on Turbulent Shear Flows I, Pennsylvania State Univ., Univ. Park, Pa., 208-219.
Einstein, H.A. (1950). "The bed-load function for sediment transportation in open channel flows." U.S. Department of Agriculture, Soil Conservation Service, Technical Bulletin No. 1026.
Einstein, H.A., and Chien, N. (1955). "Effects of heavy sediment concentration near the bed on velocity and sediment distribution." M.R.D. Sediment Series No.8, University of California, Berkeley, California.
Eiseman, P.R. (1987). "Adaptive grid generation." Comput. Methods Appl. Mech. Engrg., 64, 321.
Elliot, R.C., and Chaudhry, M.H. (1992). "A wave propagation model for two-dimensional dam-break flows." J. Hydr. Res., 30(4), 467-483.
Engelund, F., and Fredsoe, J. (1976). "A sediment transport model for straight alluvial channels." Nordic Hydro., 7(5), 293-306.
Engelund, F., and Hansen, E. (1967). "A monograph on sediment transport in alluvial streams." Tekmish Forlag, Techmical Press, Copenhagen, Denmark.
Falconer, R.A. (1980). "Numerical modeling of tidal circulation in harbors." J. Waterway, Port, Coastal and Ocean Div., ASCE, 106(WW1), 31-48.
Fang, H.W., and Wang, G.Q. (2000). "Three-dimensional mathematical model of suspended-sediment transport." J. Hydr. Engrg., ASCE, 126(8), 578-592.
Fennema, R.J., and Chaudhry, M.H. (1986). "Explicit numerical schemes for unsteady free-surface flows with shocks." Water Resource Res., 22(13), 1923-1930.
Fennema, R.J., and Chaudhry, M.H. (1987). "Simulation of one-dimensional dam-break flows." J. Hydr. Res., 25(1), 41-51.
Fennema, R.J., and Chaudhry, M.H. (1989). "Implicit methods for two-dimensional unsteady free-surface flows." J. Hydr. Res., 27(3), 321-332.
Fennema, R.J., and Chaudhry, M.H. (1990). "Explicit methods for 2-D transient free-surface flows." J. Hydr. Engrg., ASCE, 116(8), 1013-1034.
Flokstra, C. (1977). "The closure problem for depth-averaged two-dimensional flow." Paper A106, 17th Congress of the Int. association for Hydr. Research, Baden-Baden, Germany, Vol. 2, 247-256.
Fraccarollo, L., and Toro, E.F. (1995). "Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems." J. Hydr. Res., 33(6), 843-864.
Franke, R., and Nielson, G. (1980). "Smooth interpolation of large sets of scattered data." Int. J. Num. Meths Engrg., 15, 1691.
Fujihara, M., and Borthwick, A.G.L. (2000). "Godunov-type solution of curvilinear shallow-water equations." J. Hydr. Engrg., ASCE, 126(11), 827-836.
Gabutti, B. (1983). "On two upwind finite-difference schemes for hyperbolic equations in non-conservative form." Comput. Fluids, 11(3), 207-230.
Galappatti, G., and Vreugdenhil, C.B. (1985). "A depth-integrated model for suspended sediment transport." J. Hydr. Res., IAHR, 23(4), 359-375.
Garcia, M., and Parker, G. (1991). "Entrainment of bed sediment into suspension." J. Hydr. Engrg., ASCE, 117(4), 414-435.
Garcia, R., and Kahawita, R.A. (1986). "Numerical solution of the St. Venent equations with the MacCormack finite-difference scheme." Int. J. Num. Meths Fluids, 6, 259-274.
Garcia-Navarro, P., and Priestley, A. (1994). "A conservative and shape-preserving semi-Lagrangian method for the solution of the shallow water equations." Int. J. Num. Meths Fluids, 18, 273-294.
Garcia-Navarro, P., and Saviron, J.M. (1992). "MacCormack’s method for the numerical simulation of one-dimensional discontinuous unsteady open channel flows." J. Hydr. Res., 30(1), 95-105.
Garcia-Navarro, P., Priestley, A., and Alcrudo, F. (1994). "An implicit method for water flow modelling in channels and pipes." J. Hydr. Res., 32(5), 721-742.
Gharangik, A.M., and Chaudhry, M.H. (1991). "Numerical simulation of hydraulic jump." J. Hydr. Engrg., ASCE, 117(9), 1195-1211.
Glaister, P. (1988). "Approximate Riemann solutions of the shallow water equations." J. Hydr. Res., 26(3), 293-306.
Glaister, P. (1993). "Flux difference splitting for open-channel flows." Int. J. Num. Meths Fluids, 16, 629-654.
Gosman, A.D., Khalil, E.E., and Whitelaw, J.H. (1979). "The calculation of two-dimensional turbulent recirculating flows." Turbulent Shear Flows I, Springer Verlag, Heidelberg.
Greimann, B.P., and Holly, F.M. (2001). "Two-phase flow analysis of concentration profiles." J. Hydr. Engrg., ASCE, 127(9), 753-762.
Guo, Q.C., and Jin, Y.C. (1999). "Modeling sediment transport using depth-averaged and moment equations." J. Hydr. Engrg., ASCE, 125(12), 1262-1269
Hicks, F.E., and Steffler, P.M. (1992). "Characteristic dissipative Galerkin scheme for open-channel flow." J. Hydr. Engrg., ASCE, 118(2), 337-352.
Hicks, F.E., Steffler, P.M., and Yasmin, N. (1997). "One-dimensional dam-break solutions for variable width channels." J. Hydr. Engrg., ASCE, 123(5), 464-468.
Hodges, B.R., and Imberger, J. (2001). "Simple curvilinear method for numerical methods of open channels." J. Hydr. Engrg., ASCE, 127(11), 949-958.
Holly, F.M., and Rahuel, J.L. (1990). "New numerical/physical framework for mobile-bed modelling, Part I: Numerical and physical principles." J. Hydr. Res., 28(4), 401-416.
Holly, F.M., Yang, J.C., and Spasojevic, M. (1985). "Numerical simulation of water and sediment movement in multi-connected networks of mobile bed." Iowa Institute of Hydraulic Research, Limited Distribution Report No. 131, The University of Iowa, Iowa City, Iowa, U.S.A..
Holly, F.M., Yang, J.C., Schovarz, P., Scheefer, J., Hsu, S.H., and Einhellig, R. (1990). "CHARIMA: Numerical simulation of Unsteady water and sediment movements in multiply connected networks of mobile-bed channels." IIHR Report No. 343, The University of Iowa, Iowa City, Iowa, U.S.A..
Hsu, C.T., and Yeh, K.C. (2002). "Iterative explicit simulation of 1D surges and dam-break flows." Int. J. Num. Meths Fluids, 38, 647-675.
Hsu, C.T., Yeh, K.C., and Yang J.C. (2000). "Depth-averaged two-dimensional curvilinear explicit finite analytic model for open-channel flows." Int. J. Num. Meths Fluids, 33, 175-202.
Hsu, S.M., and Holly, F.M. (1992). "Bed-load transport. I: Mechanical characteristics." J. Hydr. Engrg., ASCE, 118(8), 1135-1152.
Hu, C., and Hui, Y. (1996). "Bed-load transport. I: Mechanical characteristics." J. Hydr. Engrg., ASCE, 122, (5), 245-254.
Hu, K., Mingham, C.G., and Causon, D.M. (1998). "A bore-capturing finite volume method for open-channel flows." Int. J. Num. Meths Fluids, 28, 1241-1261.
Jha, A.K., Akiyama, J., and Ura, M. (1994a). "An implicit model based on conservative flux splitting technique for one dimensional unsteady flow." J. Hydroscience Hydr. Engrg., JSCE, 11(2), 69-82.
Jha, A.K., Akiyama, J., and Ura, M. (1994b). "Modeling unsteady open-channel flows — modification to Beam and Warming scheme." J. Hydr. Engrg., ASCE, 120(4), 461-476.
Jha, A.K., Akiyama, J., and Ura, M. (1996). "A fully conservative Beam and Warming scheme for transient open channel flows." J. Hydr. Res., 34(5), 605-621.
Jha, A.K., Akiyama, J., and Ura, M. (2000). "Flux-difference splitting schemes for 2D flood flows." J. Hydr. Engrg., ASCE, 126(1), 33-42.
Johnson, B.H., and Thompson, J.F. (1986). "Discussion of a depth-dependent adaptive grid generator for use in computational hydraulics." in Numerical Grid Generation in Computational Fluid Dynamics, edited by Hauser, J., and Taylor, C., 629. Proceedings of the International Conference held at Landshut, West Germany, 14-17 July.
Jones, W.P., and Launder, B.E. (1972). "The prediction of laminarization with a two-equation model of turbulence." Int. J. Heat and Mass Transfer, 15, 301.
Karim, M.F., and Kennedy, J.F. (1982). "IALLUVIAL: A computer-based flow and sediment-routing model for alluvial streams and its application to the Missouri River." Report No. 250, Iowa Inst. of Hydr. Res., Univ. of Iowa, Iowa City, Iowa, U.S.A..
Katopodes, N., and Strelkoff, T. (1978). "Computing two-dimensional dam-break flood waves." J. Hydr. Div., ASCE, 104(HY9), 1269-1288.
Katopodes, N.D. (1984). "A dissipative Galerkin scheme for open-channel flow." J. Hydr. Engrg., ASCE, 110(4), 450-466.
Katopodes, N.D., and Wu, C.T. (1986). "Explicit computation of discontinuous channel flow." J. Hydr. Engrg., ASCE, 112(6), 456-475.
Kim, J., Moin, P., and Moser, R. (1987). "Turbulence statistics in fully developed channel flow at low Reynolds number." J. Fluid Mechanics, 177, 133-166.
Kuipers, J., and Vreugdenhil, C. B. (1973). "Calculation of two-dimensional horizontal flow." Report S 163-1, Delft Hydr. Laboratory.
Launder, B.E., Morse, A.P., Rodi, W., and Spalding, D.B. (1973). "The prediction of free-shear flows — a comparison of the performance of six turbulent models." Proc. NASA Langley Free Turbulent Shear Flows Conf., Vol. 1, NASA SP 320.
Li, R.M., Mussetter, R.A., and Grindeland, T.R. (1988). "Sediment-routing model: HEC2SR." Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data.
Lien, H.C., Hsieh, T.Y., Yang, J.C., and Yeh, K.C. (1999). "Bend-flow simulation using a 2-D depth-averaged model." J. Hydr. Engrg., ASCE, 125(10), 1097-1108.
Lin, B. (1984). "Current study of unsteady transport of sediment in China." Proceedings of Japan-China Bi-Lateral Seminar on River Hydraulics and Engineering Experience, Tokyo-Kyoto-Sapporo, 337-342.
Lin, B., and Falconer, R.A. (1996). "Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters." J. Hydr. Res., IAHR, 34(4), 435-456.
Lin, P.N., and Shen, H.W. (1984). "Two-D flow with sediment by characteristics method." J. Hydr. Engrg., ASCE, 110(5), 615-625.
Lin, P.N., Huan, J., and Li, X. (1983). "Unsteady transport of suspended load at small concentrations." J. Hydr. Engrg., ASCE, 109(1), 86-98.
Louaked, M., and Hanich, L. (1998). "TVD schemes for the shallow water equations." J. Hydr. Res., 36(3), 363-378.
McGuirk, J.J., and Rodi, W. (1978). "A depth-averaged mathematical model for the near field of side discharges into open channel flows." J. Fluid Mech., 86, 761-781.
Meyer-Peter, E., and Muller, R. (1948). "Formulas for bedload transport." IAHR, 2nd Meeting, Stockholm.
Mingham, C.G., and Causon, D.M. (1998). "A fully conservative Beam and Warming scheme for transient open channel flows." J. Hydr. Engrg., ASCE, 124(6), 605-614.
Mingham, C.G., and Causon, D.M. (2000). "Calculation of unsteady bore diffraction using a high resolution finite volume method." J. Hydr. Res., 38(1), 49-56.
Moin, S.M.A., Lam, D.C.L., and Smith, A.A. (1988). "Eularian-Lagrangian linked algorithm for simulating discontinuous open channel flows." Proc. of the VII Int. Conf. on Computer Methods in Water Resources, MIT, USA, 2, 363-368.
Molinas, A.M., and Yang, C.T. (1986). "Computer program user’s manual for GSTARS." U.S. Department of Interior Bureau of Reclamation Engineering and Research Center, Denver, Colorado.
Molls, T., Chaudhry, M.H., and Khan, K.W. (1995). "Numerical simulation of two-dimensional flow near a spur-dike." Adv. Water Resources, 18(4), 227-236.
Olsen, N.R.B., and Kjellesvig, H.M. (1999). "Three-dimensional numerical modelling of bed changes in a sand trap." J. Hydr. Res., 37(2), 189-198.
Onishi, Y., and Trest, D.S. (1985). "Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson river estuary." Proceedings of the Specialty Conference, Hydraulics and Hydrology in the Small Computer Age, ASCE, Orlando, 12-17 August, 1095-1100.
Orvis, C.J., and Randle, T.J. (1987). "STARS: Sediment transport and river simulation model." Technical Guideline, Bureau of Reclamation, U.S. Department of Interior.
Ouillon, S., and Guennec, B. (1996). "Modelling non-cohesive suspended sediment transport in 2D vertical free surface flows." J. Hydr. Res., 34(2), 219-236.
Panagiotopoulos, A.G., and Soulis, J.V. (2001). "Implicit bidiagonal scheme for depth-averaged free-surface flow equations." J. Hydr. Engrg., ASCE, 126(6), 425-436.
Patankar, S.V. (1980). "Numerical heat transfer and fluid flow." Hemisphere Publishing Corp., Bristol, Pa, 1980.
Patel, P.L., and Ranga Raju, K.G. (1999). "Critical tractive stress of nonuniform sediments." J. Hydr. Res., 37(1), 39-58.
Pavlovic, R.N., Varga, S., and Misic, B. (1985). "Two-dimensional depth-averaged model for the calculation of sediment transport and riverbed deformation." Proceedings of International Symposium on Refined Flow Modeling and Turbulence Measurements, Iowa, U.S.A., September.
Ponce, V.M., and Yabusaki, S.B. (1981). "Modeling circulation in depth-averaged flow." J. Hydr. Div., ASCE, Vol. 107, No. Hy11, pp. 1501-1518.
Prandtl, L. (1925). "Uber die ausgebildete turbulenz." ZAMM, 5, 136.
Prandtl, L. (1942). "Bemerkungen zur theorie der freien turbulenz." ZAMM, 22, 241-243.
Qin, R. (1980). "Incipient motion of non-uniform sand." J. Sediment Res., 83-91. (in Chinese)
Rahman, M., and Chaudhry, M.H. (1995). "Simulation of hydraulic jump with grid adaptation." J. Hydr. Res., 33(4), 555-568.
Rajaratnam, N., and Nwachukwu, B. (1983). "Flow near groyne-like structures." J. Hydr. Div., ASCE, 109(HY3), 463-480
Rastogi, A.K., and Rodi, W. (1978). "Predictions of heat and mass transfer in open channels." J. Hydr. Div., ASCE, HY3, 397-420.
Reinaldo, G.M, Ivan, S.C., Beatriz, F.P., Eduardo, V., and Carlos, V. (1999). "A two-dimensional computational model to simulate suspended sediment transport and bed changes." J. Hydr. Res., 37(3), 327-344.
Richmond, M.C., Chen, H.C., and Patel, V.C. (1986). "Equations of laminar and turbulent flows in general curvilinear coordinates." IIHR Report, No. 300, the Univ. of Iowa, Iowa.
Rodi W. (1980). "Turbulence models and their application in hydraulics — a state of the art review." Technique report, University of Karlsruhe, Karlsruhe, Germany.
Roe, P.L. (1981). "Approximate Riemann solver, parameter vectors, and difference schemes." J. Comp. Phys., 43(2), 357-372, 1981.
Rouse, H. (1937). "Modern conceptions of the mechanics of turbulence." Transactions of the ASCE, vol. 102.
Samaga, B.R., Ranga Raju, K.G., and Garde, R.J. (1986). "Bed load transport of sediment mixture." J. Hydr. Engrg., ASCE, 112(11), 1003-1018.
Sanders, B.F. (2001). "High-resolution and non-oscillatory solution of the St. Venant equations in non-rectangular and non-prismatic channels." J. Hydr. Res., 39(3), 321-330.
Savic, L., and Holly, F.M. (1993). "Dambreak flood waves computed by modified Godunov method." J. Hydr. Res., 31(2), 187-204.
Shen, C.Y. (1991). "Numerical simulation of viscous flow using a solution-adaptive method." Ph. D. Dissertation, Depart. of Mechanical Engrg., Arizona State Univ., Tempe, Arizona.
Shepard, D. (1968). "A two-dimensional interpolation function for irregularly-spaced data." Proceedings 23rd National Conference of ACM.
Simons, D.B., Chen, Y.H., and Ponce, V.M. (1979). "Development of a two-dimensional water and sediment routing model and its application to study lower poor 4 in the upper Mississippi river system." Engrg. Research Center, Colorado State Univ., Fort Collins, Colorado.
Singhal, A.K., and Spalding, D.B. (1975). "Prediction of two-dimensional boundary layers with the aid of the k-εmodel of turbulence." Imperial College, Mech. Engrg. Rep. HTS/75.
Spasojevic, M., and Holly, F.M. (1990). Ŗ-D bed evolution in natural watercourses — New simulation approach." J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 116(4), 425-443.
Stephenson, P.L. (1976). "Theoretical study of heat transfer in two-dimensional turbulent flow in a circular pipe and between parallel and diverging plates." Int. J. Heat and Mass Transfer, 19, 413-423.
Suryanarayana, B. (1969). "Mechanics of degradation and aggradation in a laboratory flume." Engrg. Hydr, Colorado state University, Colorado.
Thomas, W.A., and Mcanally, W.H. (1985). "User’s manual for the generalized computer program system open-channel flow and sedimentation TABS-2." Department of the Army Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, U.S.A..
Thomas, W.A., and McAnally, W.H. Jr. (1985). "User’s manual for the generalized computer program system open-channel flow and sedimentation — TABS-2, main text." Instruction Report HL-85-1, Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Mississippi, July, 30 Pages.
Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W. (1985). "Numerical grid generation: foundations and applications." North-Holland, Amsterdam.
Tingsanchali, T., and Maheswaran, S. (1990). Ŗ-D depth-average flow computation near groyne." J. Hydr. Engrg., ASCE, 116(1), 71-86.
Toro, E.F. (1992). "Riemann problems and the WAF method for solving the two-dimensional shallow water equations." Phil. Trans. R. Soc. Lond., A 338, 43-68.
Tsai, W.F., and Chen, C.J. (1995). "Unsteady finite-analytic method for solute transport in ground-water flow." J. Engrg., Mech., ASCE, 121(2), 230-243.
Tsai, W.F., Chen, C.J., and Tien, H.C., (1993). "Finite analytic numerical solutions for unsaturated flow with irregular boundaries." J. Hydr. Engrg., ASCE, 119(11), 1274-1298.
Tseng, M.H., and Chu, C.R. (2000). "Two-dimensional shallow water flows simulation using TVD-MacCormack scheme." J. Hydr. Res., 38(2), 123-131.
Tseng, M.H., Hsu, C.A., and Chu, C.R. (2001). "Channel routing in open-channel flows with surges." J. Hydr. Engrg., ASCE, 127(2), 115-122.
U.S. Army Corps of Engineers, (1993). "HEC-6: Scour and Deposition in rivers and reservoirs user’s manual." CPD-6.
Usseglio-Polatera, J.M., and Cunge, J.A. (1985). "Modeling of polutant and suspended-sediment transport with argos modeling system." International Conference on Numerical and Hydraulic Modeling of Ports and Harbors, Birmingham, 23-25 April.
van Rijn, L.C. (1981). "Entrainment of fine sediment particles; development of concentration profiles in a steady, uniform flow without initial sediment load." Rep. No. M1531, Part II, Delft Hydraulic Laboratory, Delft, The Netherlands.
van Rijn, L.C. (1984). "Sediment pick-up functions." J. Hydr. Engrg., ASCE, 110(10), 1495-1502.
van Rijn, L.C. (1984a). "Sediment transport, Part I: Bed load transport." J. Hydr. Engrg., ASCE, 100(10), 1431-1456.
van Rijn, L.C. (1984b). "Sediment transport, Part II: Suspended load transport." J. Hydr. Engrg., ASCE, 110(11), 1613-1641.
van Rijn, L.C. (1986a). "Sedimentation of dredged channels by currents and waves." J. Waterway, Port, Coastal and Ocean Engineering, 112(5), 541-559.
van Rijn, L.C. (1986b). "Mathematical modeling of suspended sediment in nonuniform flows." J. Hydr. Engrg., ASCE, 112(6), 433-455.
Wu, W., Rodi, W., and Wenka, T. (2000a). ŗD numerical modeling of flow and sediment transport in open channels." J. Hydr. Engrg., ASCE, 126(1), 4-15.
Wu, W., Wang, Sam S.Y., and Jia, Y. (2000b). "Nonuniform sediment transport in alluvial rivers." J. Hydr. Res., 38(6), 427-434.
Yang, C.T. (1973). "Incipient motion and sediment transport." J. Hydr. Div., ASCE, 99(HY10), 1679-1704.
Yang, J.C., Chen, K.N., and Lee, H.Y. (1992). "An accurate computation for rapidly varied flow in an open channel." Int. J. Num. Meths Fluids, 14, 361-374.
Yang, J.Y., Hsu, C.A., and Chang, S.H. (1993). "Computations of free surface flows, Part 1: one-dimensional dam-break flow." J. Hydr. Res., 31(1), 19-34.
Ye, B.J., and McCorquodale, J.A. (1997). "Depth-averaged hydrodynamic model in curvilinear collocated grid." J. Hydr. Engrg., ASCE, 123(5), 380-388.
Yen, C.L., Chang, S.Y., and Lee, H.Y. (1992). "Aggradation degradation process in alluvial channels." J. Hydr. Engrg., ASCE, 118(12), 1651-1669.
Zimmermann, C., and Kennedy, J.F. (1978). "Transverse bed slopes in curved alluvial streams." J. Hydr. Engrg., ASCE, 104(HY1), 33-48.
李鴻源、楊錦釧、葉克家、楊志達、謝慧民(1996),「辯狀河系沖淤模式之發展」,中興工程顧問社專案研究報告SEC/R-HY-96-07。
連和政(1999),「二維水深平均模式應用於彎道水流與泥沙運移模擬之研究」,國立交通大學土木工程研究所博士論文。
楊錦釧(1998),「低水河槽沈滓及污染質傳輸之模擬(III)」,國科會專題研究計畫成果報告,NSC86-2621-E009-016。
蔡東霖(2001),「區域性地下水超抽導致地層下陷模式之發展與應用」,國立交通大學土木工程研究所博士論文。
蔡長泰、沈學文、王文江(1993),「台灣河川沉滓輸運之分析(三)」,水資會委辦之研究報告。
鄭育能(1995),「結構性格點產生法的一些進展」,第三屆全國計算流體力學研討會,59-65。
顏清連、李鴻源、張守陽(1988),「沖積河流之沖淤力學與數值模擬 - 以濁水溪為應用對象(II)」,國科會防災科技研究報告。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周愫嫻(1996)。家長會與學校的對話關係。北縣教育,13,20-24。
2. 林偉人(2000)。學校本位管理的成效與限制。學校行政雙月刊,5,63-71。
3. 林逸舒(1997)。工會幹部在集體協商中應扮演的角色。勞工行政,110,48-50。
4. 林惠真(1997)。敞開溝通大門共迎校務合議時代的來臨─讓教師會、家長會、學校行政共創三贏局面。教師天地,86,38-41。
5. 林秀珍(1991)。教師集體協商的藝術─以美國教師專業組織為例。現代教育,6(2),105-114。
6. 林天祐(1996)。學校教師會與學校行政:競爭與合作?。教育資料與研究,8,18-19。
7. 吳清山(1996)。共創學校與家長會雙贏局面。北縣教育,13,14-19。
8. 李玉惠(2001)。從團體動力談學校行政領導的革新。學校行政雙月刊,11,51-65。
9. 李玉惠(2000)。重塑新的校園權力運作結構。臺灣教育,594,12-23。
10. 秦夢群(1994)。美國教師申訴制度之研究。美歐月刊,9(5),144-153。
11. 張明輝(1997b)。學校組織的變革及其因應策略。教育研究集刊,38,2-21。
12. 張煌熙(1996)。教師組織與「集體協商」的運用。教育資料與研究,8,9-11。
13. 張德銳(2000a)。新世紀我國中小學學校經營方向。學校行政雙月刊,5,12-22。
14. 許籐繼(2000)。我國中小學組織權力重建之探究。臺灣教育,594,24-32。
15. 陳月娥(1993)。團體協商模式與原則。勞工之友,509,14-17。