跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃永智
研究生(外文):Yung-Chih Huang
論文名稱:打樁對粉質砂土密度之影響
論文名稱(外文):Effects of Pile Driving on Density of Silty Sand
指導教授:方永壽方永壽引用關係
指導教授(外文):Yung-Show Fang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:127
中文關鍵詞:圓錐貫入試驗細料含量液化潛能打樁相對密度粉土標準貫入試驗
外文關鍵詞:Cone penetration testFine contentLiquefaction potentialPile drivingRelative densitySilty sandStandard penetration test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:2
本研究應用SPT或CPT試驗所獲得之貫入阻抗,檢測打樁前及打樁後土壤之密度變化,探討打樁對於粉質砂土密度之影響。為防止飽和疏鬆粉質砂土液化,亦可利用打樁方式進行地盤改良。打擊樁貫入土層時造成振動與樁身擠壓,使得樁周圍土壤孔隙體積減小、密度增加,因此造成土壤強度及承載力增加,液化潛能降低等效應。由於非凝聚性土壤不擾動取樣不易,通常以現地標準貫入試驗(SPT)或圓錐貫入試驗(CPT)之貫入阻抗值,來評估現地土壤改良成效及抗液化能力。
本研究建立一套流程,由打樁前之SPT-N值或CPT-qc值,運用等體積取代原理,預測打樁後土層各深度之N值或qc值,用以預估打樁後土壤液化潛能。上述預測流程將應用在日本新潟車站案例及台灣雲林麥寮REF與PP廠區案例,探討打樁在不同深度造成之土壤密度變化,及採用不同學者建議之經驗公式,所預測之土壤貫入阻抗值與實測貫入阻抗值之差異,並得到以下各項結論:
1.日本新潟車站案例:
打樁後土壤的相對密度約增加為打樁前土壤相對密度的1.1 ~ 1.7倍。以Meyerhof公式求出之預測N值與實測N值較Marcuson and Bieganousky 公式吻合。故依Meyerhof (1957)經驗公式所預測之效果較佳。
2.雲林麥寮REF廠區案例:
打樁後土壤之相對密度大致因打樁而增加,但也有例外情況,可能是因為打樁前土壤已經過DC工法之改良,土層之相對密度已經很高,而打樁過程因側向擠壓,反而造成土壤體積膨脹,相對密度降低,因此造成貫入阻抗值下降之現象。打樁後土壤的相對密度約增加為打樁前相對密度的1.0至 2.3倍。本論文所預測之qc值與實際qc值之標準誤差僅3.27 ~ 3.72 MPa,應屬可接受之結果。
3.雲林麥寮PP廠區案例:
打樁後土壤的相對密度約增加為打樁前相對密度的1.0至 2.2倍。本論文所預測出之qc值與實測qc值相比標準誤差僅2.13 ~ 3.14 MPa,亦應屬可接受之結果。
This paper studies the effects of pile driving on the density of silty sand. The variation of soil density was examined based on the SPT-N value and CPT-qc values before and after pile driving. Pile driving was used for ground improvement to be increase soil density and decrease liquefaction potential for saturated sandy soil. The piles were driven into the ground by hammering, vibration and insertion of the pile body decreased the volume of void surrounding the pile, hence increased the density of the soil.
Due to the difficulty of sampling undisturbed cohesionless soils, the penetration resistance from the SPT and CPT tests is usually used to evaluate the effects of ground improvement. Based on the principle of constant volume replacement, a procedure was established in this study to predict SPT-N value and CPT-qc value after pile driving. The liquefaction potential within the group piles can be properly estimated. The prediction model was applied to the case of Niigata train station in Japan and the Mai-Liao REF and PP factory sites. The variation of soil density caused by pile diving is discussed in this study, and the following conclusions are made.
1.Case of Niigata train station:
The relative density of soil after pile driving is approximately 1.1 ~ 1.7 times the Dr value before pile driving. The SPT-N value after pile driving predicted with the Meyerhof’s formula matched the measure SPT-N value quite well.
2.Case of Mai Liao REF factory:
The relative density of soil increased after pile driving however some exceptions still exists. The relative density of soil after pile driving is approximately 1.0 ~ 2.3 times the relative density before pile driving. A standard deviation of 3.27 ~ 3.72 MPa exists between the predicted and measure qc after pile driving. The predicting procedure proposed in this study is considered acceptable.
3.Case of Mai Liao PP factory:
The relative density of soil after pile driving is approximately 1.0 ~ 2.2 times that before pile driving. A difference of 2.13 ~ 3.14 MPa exists between the predicting and measured qc after pile driving.
頁次
中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… iii
致謝 ……………………………………………………………… v
目錄 ……………………………………………………………… vi
表目錄 ……………………………………………………………… viii
圖目錄 ……………………………………………………………… ix
符號說明 ……………………………………………………………… xiii
第一章 緒論………………………………………………………… 1
1-1 研究動機與目的…………………………………………… 1
1-2 研究方法…………………………………………………… 1
1-3 論文組織…………………………………………………… 2
第二章 文獻回顧…………………………………………………… 3
2-1 樁基礎於大地工程之應用………………………………… 3
2-2 標準貫入試驗……………………………………………… 3
2-2-1 標準貫入試驗之發展歷史………………………………… 4
2-2-2 標準貫入試驗之應用……………………………………… 4
2-2-3 SPT-N值與相對密度Dr之關係…………………………… 5
2-3 圓錐貫入試驗……………………………………………… 7
2-3-1 圓錐貫入試驗之發展歷史………………………………… 7
2-3-2 圓錐貫入試驗之應用……………………………………… 8
2-3-3 CPT-qc值與相對密度Dr之關係…………………………… 10
2-4 細料含量與emax及emin之關係…………………………… 11
第三章 預測打樁後土壤密度變化之模式………………………… 14
3-1 等體積取代法……………………………………………… 14
3-2 預測打樁後SPT-N值之流程……………………………… 15
3-3 預測打樁後CPT-qc值之流程……………………………… 16
第四章 日本新潟車站之標準貫入試驗案例……………………… 17
4-1 日本新潟車站案例概述…………………………………… 17
4-2 地質狀況概述……………………………………………… 17
4-3 預測結果…………………………………………………… 17
4-3-1 打樁前後土層密度變化…………………………………… 18
4-3-2 預測與現場實測SPT-N值之比較………………………… 18
第五章 雲林麥寮REF廠區圓錐貫入試驗案例…………………… 19
5-1 REF廠區概述……………………………………………… 19
5-2 地質狀況…………………………………………………… 19
5-3 CPT試驗設備與步驟……………………………………… 20
5-4 預測結果…………………………………………………… 20
5-4-1 打樁前後土層密度變化…………………………………… 21
5-4-2 預測與現地實測CPT-qc值之比較………………………… 22
第六章 雲林麥寮PP廠區圓錐貫入試驗案例……………………… 23
6-1 PP廠區案例概述…………………………………………… 23
6-2 地質狀況…………………………………………………… 23
6-3 預測結果…………………………………………………… 24
6-3-1 打樁前後土層密度變化…………………………………… 24
6-3-2 預測與現地實測CPT-qc值之比較………………………… 25
6-4 建議預測模式之優缺點…………………………………… 25
第七章 結論與建議………………………………………………… 27
7-1 結論………………………………………………………… 27
7-2 建議………………………………………………………… 28
參考文獻 ……………………………………………………………… 30
參考文獻
1. 李延恭,(1986),”淺談貫入試驗之應用及發展”,地工技術雜誌,第16期,pp. 4-13。
2. 林永光,呂芳嬂,程日晟,(1995),”打擊式預力混凝土基樁施工及品管簡介”,地工技術雜誌,第52期,pp. 5-14。
3. 林炳森,李豐博,賴聖耀,(1986),”荷式錐貫入試驗與土壤動態性質關係”,地工技術,第16期,pp. 51-62。
4. 段紹偉,王瑞芳,王劍虹,(1991),”電子錐在推估打擊式基樁承載力上之應用-案例介紹”,第36期,pp. 6-19。
5. 陳斗生,(1986),”電子式圓錐貫入儀之工程應用”,地工技術雜誌,第13期,pp. 62-76。
6. 陳俶季,張天祥,林聰杰,(1996), ”PMT、SPT、CPT於砂質土壤所得參數相關性之研究”, 中國土木水利工程學刊,第八卷,第一期,pp. 21-32。
7. 陳金溪, (1985),”軟弱地盤改良工法研究”,中華工程公司嘉南工業區發展所。
8. 森重龍馬,高橋利行,(1984),”打樁在砂層土壤液化的防止對策”,地盤液化之防止對策特集,pp.74-79。
9. 張嘉偉,(1997),”圓錐貫入試驗在粉砂中之標定”,國立交通大學土木工程系,碩士論文。
10. 富繼工程有限公司,(1996),”塑化麥寮煉油廠新建工程第三常壓蒸餾及飽和氣體工廠(CDU#3)”,工作成果報告書。
11. 萬鼎工程服務股份有限公司,(1997),”塑化公司REF廠打樁前後土壤影響CPT檢測工作(打樁前)”,檢測報告書。
12. American Society for Testing and Materials (2000). Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock(Ⅰ): D1586 and D3441.
13. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowsky, M., Marchetti, S., and Pasquelini, E. (1986). ” Flat Dilatometer Tests in Calibration Chambers”, Proceedings, In Site ’86, Geotechnical Special Publication 6, ASCE, New York, pp. 431-446.
14. Cubrinovski, M., and Ishisara, K. (1999).”Empirical Correlation between SPT N-value and Relative Density for Sandy Soils,” Soils and Foundations, Vol. 39, No. 5, pp. 61-71.
15. Das, B. M., (1998). “Principles of Foundation Engineering-4th ed..” PWS Publish Company, Boston pp. 101-102., pp. 581-593.
16. Douglas, B. J., Olsen, R. S., and Martin, G. R. (1981). Evaluation of the Cone Penetrometer Test for SPT Liquefaction Assessment, Proceedings, In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE, New York..
17. Gibbs, H. J. and Holtz, W. G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing, “ Proceedings 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, pp. 35-39.
18. Hirama, T., (1981) “A Few Knowledge of Application of Relative Density”, Proceedings of Janpan Symposium on Geotechnical Properties and Relative Density of Sand .(in Japanese)
19. Ishihara, K. (1993) “Liquefaction and Flow Failure During Earthquakes,” 33-rd Rankine lecture, Geotechnique, Vol. 43, No. 3, pp. 351-415.
20. Jamiolkowski, M., Ladd, C. C., Germaine, J. T. and Lancellatta, R. (1985). “New Developments in Field and Laboratory Testing of Soil,” Proceedings, 9th International Conference on soil Mechanics and Foundation Engineer, San Francisco, Vol. 1, pp. 57-153.
21. Kayen, R. E., Mitchell, J. K., Seed, R. B., Lodge, A., Nishio, S.,and Cotinho, R. (1992). Evaluation of SPT-, CPT-, and Shear Wave-Based Methods for Liquefaction Potential Assessment using Loma Prieta Data, Proceedings, 4th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Vol. 1, pp. 177-204.
22. Kishida, H.(1967). “Ultimate Bearing Capacity of Piles Drivien into Loose Sand,” Soils and Foundations, Vol. 7, No. 3, pp. 20-29.
23.Kramer, S. L. and Holtz, R.D. (1991). “Soil Improvement and Foundation Remediation with Emphasis on Seismic Hazards, “ University of Washington , Seattle, Washington, pp. 106.
24. Kovacs, W. D., Salomone, L. A., and Yodel, F. Y. (1981), “Energy Measurements in the Standard Penetration Test”, Building Science Series 135, National Bureau of Standards, Washington, DC.
25. Kulhawy, F. H., and Mayne, P. W. (1990), “Maunal on Estimating Soil Properties for Foundation Design,” Report EL-6800, Electric Power Research Institute, Palo Alto, CA.
26. Lindqvist, L. and Petaja, J.(1981). “Experience in the Evaluation of the Bearing Capacity of Tapered Friction Piles in Postglacial Sand and Silt Strata,” Proceedings, 10th International Conference on soil Mechanics and Foundation Engineering, Stockholm, Vol. 2, pp. 759-766.
27. Marcuson, W. F. Ⅲ, Hadala, P. F., and Ledbetter, R. H. (1991). “Seismic Rehabilitation of Earth Dams,” Geotechnical Practice in Dam Rehabilitation, Geotechnical Special Publication 35, ASCE, New York, pp. 430-466.
28. Marcuson, W. F. Ⅲ, and Bieganousky, W. A. (1977). “SPT and Relative Density in Coarse Sands, “ Journal of Geotechnical Engineering Division, American Society of Civil Engineers, Vol. 103, No. 11, pp. 1295-1309.
29. Meyerhof, G. G. (1957). “Discussion on Research on Determining the Density of Sands by Spoon Penetration Testing,” Proceeding 4th International Conference on Soil Mechanics and Foundation Engineer, Vol. 3, pp. 100.
30. Mitchell, J. K. and Tseng, D. J. (1990). “Assessment of Liquefaction Potential by Cone Penetration Resistance “ in J.M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, Berkeley, California, Vol. 2, pp. 335-350.
31. Mitchell, J. K. and Wentz, F. L. (1991). “Performance of Improved Groud during the Loma Prieta Earthquake,” Report UCB/EERC-91/12, Earthquake Engineering Research Center, University of California, Berkeley.
32. Robertson, P. K. and Campanella, R.G.,(1983) “Interpretation of Cone Penetration Tests,” Canadian Geotechnical Journal, No. 20, pp. 718-745.
33. Robinsky, E. I. and Morrison, D.E.(1964). “Sand Displacement and Compaction around Model Friction Piles,” Canadian Geotechnical Journal, Vol. 1, No. 2, pp. 81-93.
34. Schmertmann, J. H. (1976). “Predicted the qc/N Ratio,” Final Report D-636, Engineering and Industrial Experiment Station, Department of Civil Engineering, University of Florida, Gaineville, Fla.
35. Schmertmann, J. H. (1978). ”Study of Feasibility of Using Wissa-type Piezometer Probe to Indentify Liquefaction Potential of Saturated Fine Sands, Waterwayss Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Miss. Technical Report S-78-2, pp. 65.
36. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation.” Journal of Geotechnical Engineer ,ASCE, Vol. 111, No. 12, pp.1425-1445.
37. Skempton, A. W. (1986). “Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Relative Density, Partical Size, Ageing and Over Consolidation,” Geotechnique, Vol. 36, No. 3, pp. 425-447.
38. Solymar, Z. V. and Reed, D. J. (1986). “A Comparison of Foundation Compaction Techniques,” Canadian Geotechnical Journal, Vol. 23, No. 3, pp. 271-280.
39. Thevanayagam, S. (1998). “Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands,” Journal of Geotechnical and Geoenvironmental Engineering , Vol. 124, No. 6, pp. 479-491.
40.Youd, T. L., and Noble, S. K. (1997). “Magnitude Scaling Factors.” Proceedings NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engineering Research Center, State University of New York at Buffalo, pp.149-165.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top