跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾士漢
研究生(外文):Shi-Han Tzeng
論文名稱:條形載重於夯實回填土上造成之靜止土壓力
論文名稱(外文):Horizontal Pressures on an Unyielding Wall Due to Strip Loading on Compacted Backfill
指導教授:方永壽方永壽引用關係
指導教授(外文):Yung-Show Fang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:150
中文關鍵詞:側向土壓力條形載重夯實回填土靜止擋土牆
外文關鍵詞:Horizontal PressuresStrip LoadingCompacted BackfillNon-yielding Wall
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討於靜止擋土牆後方之夯實回填土上施加條形地表荷重造成之土壓力增量。試驗中以氣乾之渥太華砂填入實驗土槽,並以震動式夯實機使砂土之相對密度達到75%。國立交通大學研發地表荷重加載系統以施加0.1公尺寬之條形載重於夯實回填土上。條形載重之中心分別距離檔土牆面0.15公尺、0.3公尺、0.6公尺及0.9公尺。以試驗方法獲得夯實回填土之極限承載力qult,於地表加載之試驗中控制地表荷重強度於qult/3以符合工程設計原則。根據實驗結果,獲得以下各項結論。
1. 為提供均勻壓力於基腳上,使用氣墊夾置於上蓋與剛性基腳之間,是一個可行的方法。
2. 當地表載重施加於靠近檔土牆面(m≦0.1),會降低作用於靜止擋土牆之土壓力。這可能是由於夯實載重造成靠近地表土體之側向壓縮,趨近被動狀態。靠近牆面之地表荷重造成土體之軸向壓縮,同時引致側向伸張變形,改變夯實土之被動狀態而趨於較不被動的狀態(less passive),因而降低側向土壓力及側向合力Ph。這個現象會隨著地表加載位置遠離擋土牆面而消失。
3. 對於不同的加載位置,地表載重所引致的側向合力Ph明顯低於理論的預估值。因此,既有的理論評估方式,對於地表載重於夯實回填上方造成之側向土壓力,提供了一個安全但不經濟的設計。

Dry Ottawa sand was used as backfill material. The horizontal pressure acting on a non-yielding wall due to a strip loading is studied in this paper. The Ottawa sand was placed and compacted the soil bin to achieve the required relative density of 75%. A surcharge loading system was developed at National Chiao Tung University to apply a 0.1m-wide strip surcharge of compacted backfill. The centerline of footing was applied at 0.15 m, 0.30 m, 0.60 m, and 0.9 m from the surface of the wall. Experiments were conducted to determine the ultimate bearing capacity qult of the compacted backfill. From a practical point of view, the intensity of the surcharge applied is controlled to less than qult/3. Based on the experimental results, the following conclusions are made.
1. To provide a uniform normal stress on the footing, the use of an air cushion sandwiched between the lid and steel footing appears to be a practical method.
1. If the surcharge is near the face of the wall (m ≦ 0.1), the surcharge loading will induced a decrease of lateral pressure in the upper part of the compacted backfill. It may be deduced that the surcharge applied on the top of the soil element near the wall (m = 0.1) will compress the soil element vertically. The induced lateral deformation will make the compacted soil “less passive” and the lateral soil thrust Ph to decrease. This phenomenon would disappear as the surcharge loading move away from the wall.
2. The experimental lateral soil thrust induced by surcharge loading ΔPh is apparently smaller than the theoretical predictions for all surcharge loading positions. All theoretical estimations provide a safe but uneconomical design for the horizontal pressure increasing due to surcharge on the compacted backfill.

Abstract (in Chinese) ….…………………………………………………... i
Abstract ……………………………………………………………………... ii
Table of Contents …………………………………………………………… iv
List of Tables ………………………………………………………………... vii
List of Figures……………………………………………………………….. viii
List of Symbols ……………………………………………………………... xiv
1 INTRODUCTION ………………………………………. 1
1.1 Objective of Study ………………………………………………….…… 2
1.2 Research Outline ………………………………………………………… 3
1.3 Organization of Thesis …………………………………………………... 4
2 LITERATURE REVIEW ……………………………….. 5
2.1 Earth Pressure At-Rest Theory... ……………………………….………... 5
2.1.1 Coefficient of Earth Pressure At-Rest ……….………….…………. 5
2.1.2 Jaky’s Formula …………………..………….……………………... 6
2.2 Effects of Soil Compaction on Earth Pressure At-Rest………………… 7
2.2.1 Study of Rowe ……………………………………………………... 7
2.2.2 Study of Sherif, Fang, and Sherif..………………………………... 8
2.2.3 Study of Duncan and Seed……....……………………………….. 9
2.2.4 Study of Chen………………………………………………………. 9
2.3 Elastic Solution and Method of Images …………………………………. 11
2.3.1 Boussinesq’s Equation……………………………………………... 11
2.3.2 Method of Images………………………………………………….. 11
2.3.3 Vertical Loading on Surface of a Semi-Infinite Mass …………..…. 12
2.4 Model Tests and Case Histories …………………………………….…… 12
2.4.1 Study of Gerber………………….. ………………………………... 12
2.4.2 Study of Spangler ……………………..…………………………... 13
2.4.3 Study of Rehnman and Broms…………… ……………………… 14
2.4.4 Study of Sherif and Mackey ..………...…………………………… 15
2.4.5 Study of Smoltczyk et al. ………………………………………….. 16
2.4.6 Study of Van Den Berg………………………………………….. 17
2.5 Design Methods………………………………………………………….. 17
2.5.2 U.S. Navy Facilities Design Manual……………………………… 17
2.5.2 Canadian Foundation Engineering Manual ….……………………. 19
3 SURCHARGE LOADING SYSTEM ………………..… 20
3.1 Reaction Frame ………….………………………………………………. 20
3.2 Vertical-force Loading System …………………………………………... 21
3.2.1 Air-Pressure Control Panel…………………………………………. 21
3.2.2 Air-Pressure Actuator………………………………………………. 21
3.2.3 Load Cell …………………………………………………………... 22
3.3 Strip Footing ……………………………………………………………... 23
3.3.1 Lid and Steel Footing ……………………………………………… 23
3.3.2 Air Cushion ………………………………………………………... 24
3.4 Settlement Measuring System …….………………………………….…. 24
4 EXPERIMENTAL APPARATUS ………………………. 26
4.1 Non-Yielding Model Wall ….……….………………………………….. 26
4.2 Soil Bin …………………..……………………………………………… 28
4.3 Data Acquisition System ……………………………………………….. 29
4.4 Soil Compactor ………..………………………………………………… 29
5 BACKFILL, AND INTERFACE CHARACTERISTICS. 30
5.1 Backfill Properties ………………………………………………………. 30
5.2 Control of Soil Density……… …………………….……………………. 31
5.2.1 Compaction of Backfill ……...……………………………………. 31
5.2.2 Distribution of Soil Density...……………………………………. 32
5.3 Side Wall Friction …….…………………………………………………. 33
6 EXPERIMENTAL RESULTS ………………………….. 35
6.1 Earth Pressure at-rest induced by compaction …………………………... 35
6.2 Ultimate Bearing Capacity of Compacted Backfill ……………………... 36
6.3 Horizontal Pressure Due to Strip Loading ………………..……………... 37
6.3.1 Effects of Surcharge Intensity ……… …….………….…………... 38
6.3.2 Effects of Surcharge Position ..……. .……………………..……... 40
7 CONCLUSIONS ………………………………………... 42
References …………………………………………………………………... 44
Tables ………………………………………………………………………... 49
Figures ………………………………………………………………………. 53
Appendix A: Calibration of Soil Pressure Transducer …………………... 137
Appendix B: Calibration of Load Cell ……………………………………. 148

1. Boussinesq, V. J., (1883), ”Application des Potential a L’Etude de L’Equilibre et due Mouvenent des Solides Elastiques,” Gauthier-Villars, Paris.
2. Bowles, J. E., (1988), “Foundation Analysis and Design,” 4th Edition, McGraw-Hill Book Co.
3. Bros, B., (1972), “The Influence of Model Retaining Wall Displacement on Active and Passive Earth Pressures in Sand,” Proc., 5th European Conf. On Soil Mechanics, Madrid, Vol. 1, pp. 241-249.
4. Burgess, G. P., (1999), “Performance of Two Full-scale Model Geosynthetic Reinforced Segmental Retaining Walls,” Master Thesis, Royal Military College of Canada, Kingston, Ontario, p. 207.
5. Canadian Geotechnical Society, (1985), Canadian Foundation Engineering Manual 2nd edition, Technical Committee of Foundations, Vancouver, B.C., 456p.
6. Chang, S. Y., (2000), “Effects of Backfill Compaction on Active Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
7. Chen, J. T., (2001), “Reduction of Lateral Earth Pressure with a Tire-chip Compressible Layer,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
8. D’Appolonia, D. J., Whitman, R. V., and D’Appolonia, E. D., (1969), “Sand Compaction with Vibratory Rollers,” Journal of Soil Mechanics and Foundations Division, Vol. 95,No. Sm1, pp. 263-284.
9. Duncan, J. M., and Seed, R. B., (1986), “Compaction-Induced Earth Pressures under Ko-Conditions,“ Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 1, pp. 1-22.
10. Fang, Y. S., Chen, J. M., and Chen, C. Y., (1997), “Earth Pressures with Sloping Backfill,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 3, March, pp. 250-259.
11. Fang, Y. S., Chen T. J., Holtz, R. D., and Lee, W. F., (2002), Reduction of Boundary Friction in Model Tests,” Submitted to Geotechnical Testing Journal, ASTM.
12. Gerber, E. (1929), “Untersuchungen uber die Druckverteilung im ortlichen belasteten Sand,” Zurich, Switzerland.
13. Ho, Y. C., (1999), “Effects of Backfill Compaction on Passive Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
14. Jaky, J., (1944), “The Coefficient of Earth Pressure at Rest,” Journal for Society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp. 355-358.
15. Jaky, J., (1948), “Pressure in Soils,” Proceedings, 2nd International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 103-107.
16. Jurgenson, L. (1934) The application of theories of elasticity and plasticity to foundation problems. Contributions to Soil Mechanics 1925-1940. Boston Society of Civil Engineers.
17. Kumbhojkar, A. S., (1993) “ Numerical Elavuation of Terzaghi’s N,” Journal of Geotechnical Engineering, American Society of Civil Engineering, Vol. 119, No. 3, pp. 598-607
18. Mackey, R. D., and Kirk, D. P., (1967), “At Rest, Active and Passive Earth Pressures,” Proceedings, South East Asian Conference on Soil Mechanics and Foundation Engineering, Bangkok, pp. 187-199.
19. Matteotti, G., (1970), “Some Results of Quay-Wall Model Tests on Earth Pressure,” Proc., Institution of Civil Engineers, Vol. 47, pp. 185-204.
20. Mayne, P. W. and Kulhawy, F. H., (1982), “ K0 - OCR relationships in soils,” Journal of Geotechnical Engineering, Division, ASCE, Vol. 108, No. GT6, June, pp. 851-873.
21. McElory, J. A., 1997, “Seismic Stability of Geosynthetic Reinforced Slopes: A Shaking Table Study”, Master Thesis, University of Washington, Seattle.
22. Mesri, G., and Hayat, T. M., (1993), “The Earth Pressure at Rest,” Canadian Geotechnical Journal, Vol. 30, No. 4, August, pp. 647-666.
23. Meyerhof, G. G. (1963). “ Some Recent Reach on the Bearing Capacity of Foundations,” Canadian Geotechnical Journal, Vol. 1, No.1, pp.16-26
24. Mindlin, R. D. (1936), “Discussion: Pressure Distribution on Retaining walls,” 1st ICSMFE, vol.3, pp. 155-156
25. Rowe, P. W., (1954), “A Stress Strain Theory for Cohesionless Soil with Applications to Earth Pressures At Rest and Moving Walls,” Geotechnique, Vol. 4, pp. 70-88.
26. Rehnman, S. E. and Broms, B. B. ,(1972), “ Lateral Pressures on Basement Wall. Result from Full-Scale Tests,” Proc. 5th European Conf. SMFE, vol. 1, pp.189-197.
27. Sherif, M. M. and Mackey, R. D., (1977), ”Pressure on the Retaining Wall with Repeated Loading,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103 no, GT11, November,1997. pp. 1341-1345.
28. Sherif, M. A., Fang, Y. S., and Sherif, R. I., (1984), ”Ka and Ko behind Rotating and Non-Yielding Walls,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 1, Jan., pp. 41-56.
29. Smoltczyk, U.; Vogt, N.; Hilmer, K., (1979), "Lateral Earth Pressure Due to Surcharge Loads," Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, vol. 2, September, pp. 131-139
30. Sowers, G. B., and Sowers, G. F., (1961), Introductiory Soil Mechanics and Foundations, Macmillan New York, pp. 386.
31. Spangler, M. G. (1936), “the Distribution of Normal Pressure on a Retaining Walls Due to a Concentrated Surface loads,” 1st ICSMFE, vol.1 pp.200-207
32. Spangler, M. G. (1938) “Horizontal Pressure on Retaining Walls Due to Concentrated Surface Loads,” Bulletin No. 140, Iowa Engineering experiment Station, Ames, Iowa, 1938.
33. Spangler, M. G. and Mickle, J. L. (1956), “Lateral Pressures on Retaining Walls Due to Backfill Surface Loads,” Highway Research Board 141 1-18.
34. Spangler, M. G. and Handy, R. L., (1982), “Soil Engineering 4th Edition,” Harper & Row Publishing Company.
35. Terzaghi, K., (1943), Theoretical soil Mechanics, Wiley, New York.
36. Terzaghi, K., (1954), “Anchored bulkheads,” Transactions, ASCE. 119, Paper No. 2720.
37. Terzaghi, K. and Peck, R. B. (1948), Soil Mechanics in Engineering Practice, 1st ed. John Wiley, New York. pp. 312-318.
38. Tschebotarioff, G. B, (1973) Foundations, Retaining and Earth Structures, 2nd ed. McGraw-Hill Book Co. New York.
39. US NAVY, (1982), Foundation and Earth Structures, NAVFAC Design Manual DM-7.2, Washington, D. C., pp. 73-74.
40. Van Den Berg, P. (1991), “Effects of surface loading behind earth retaining walls,” Deformation of Soils and Displacements of Structures, Volume 11, pp.767-771.
41. Vesic, A. S. (1973),“ Analysis of Ultimate Loads of Shallow Foundations,” Journal of the soil Mechanics and Foundations Division, ASCE, Vol. 99 No. SM1, pp. 45-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top