(44.192.10.166) 您好!臺灣時間:2021/03/05 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾思凱
研究生(外文):Si-Kai Tzeng
論文名稱:條形載重於不同密度回填土上造成之靜止土壓力
論文名稱(外文):Horizontal Pressure on an Unyielding Wall Due to Strip Loading on Backfill with Different Densities
指導教授:方永壽方永壽引用關係
指導教授(外文):Yung-Show Fang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:142
中文關鍵詞:側向土壓力增量條形載重土壤密度擋土牆大型模型試驗渥太華砂空中霣降法地表載重
外文關鍵詞:lateral earth pressure incrementstrip loadingsoil densityretaining walllarge scale model testOttawa Sandair pluviationsurcharge loading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討於擋土牆後之回填土上施加均勻條形載重對作用於擋土牆靜止土壓力之影響。實驗中將氣乾渥太華砂以空中霣降法,沈積至模型土槽中,得到需要的疏鬆(Dr = 35%)、中等緊密(Dr = 60%)及緊密狀態(Dr = 80%)。利用交通大學模型擋土牆模型以實驗方法研究因地表荷重所引致的土壓力變化。為了在背填土上方施加一均勻的地表載重,本研究發展出一套地表荷重加載系統。根據實驗結果,獲得以下各項結論。
1. 以空中霣降法備置之試體,靜止土壓力分別小於由Jaky及Hendron所建議的理論值。
2. 土壤密度對側向土壓力增量的影響並不顯著。側向土壓力增量之合力Ph和彈性解相吻合。土壤密度對 Ph 之作用點影響並不明顯。
3. 當地表荷重距牆面水平距離0.2H以上時,側向土壓力增量之合力Ph可以用彈性解成功的預測。
4. 當條形基礎移至靠近牆面(m < 0.2)時,將會引致超乎預期的高側向壓力。所有的理論解都低估了靠近牆頂地表荷重引致之的側向土壓力。

This paper studies lateral earth pressure due to a uniform strip loading. Dry Ottawa sand was used as backfill material. Ottawa sand was deposited by air-pluviation method into the soil bin to achieve the desired loose, medium, and dense states. The instrumented model retaining-wall at National Chiao Tung University was used to investigate the variation of earth pressure induced by surcharge loading. To apply a uniform surcharge loading on the surface of backfill, a surcharge loading system was developed. Based on the experimental work, the following conclusions are made.
1. The measured earth pressure at-rest was slightly less than that calculated with Jaky’s and Hendron’s solution.
2. The influence of soil density on h is not obvious. The soil thrust increment Ph/qB in very good agreement with elastic solution. The influence of soil density on the point of application of Ph is not obvious.
3. As the surcharge is at least 0.2H from the wall, the lateral soil thrust Ph due to the surcharge can be successfully predicts with the elastic solution.
4. As the strip footing moves near the wall (m<0.2), the elastic theory can no longer predict the lateral pressure induced by the strip loading. The surcharge loading would induces unexpected high lateral pressure near the top of the wall. All theoretical solutions underestimated the horizontal pressure due to the stress concentration at the edge of the footing.

Abstract (in Chinese) ….…………………………………………………...
Abstract ……………………………………………………………………...
Acknowledgements …………………………………………….……………
Table of Contents ……………………………………………………………
List of Tables ………………………………………………………………...
List of Figures………………………………………………………………..
List of Symbols ……………………………………………………………...
1 INTRODUCTION ……………………………………….
1.1 Objective of Study ………………………………………………….……
1.2 Research Outline …………………………………………………………
1.3 Organization of Thesis …………………………………………………...
2 LITERATURE REVIEW ………………………………..
2.1 Earth Pressure At-Rest Theory ……………………………….………...
2.1.1 Cofficient of Earth Pressure At-Rest ………………….………….
2.1.2 Jaky’s Theory …………….…………………….…………………
2.1.3 Hendron’s Formula ……………………………………………….
2.2 Theories of Lateral Earth Pressure Due to Surcharge …………………..…
2.2.1 Boussinesq’s Equation ………….………….………….…….…....
2.2.2 Method of Images.…..…….…..…………………..………………..
2.2.3 Vertical Strip Loading on Surface of a Semi-finite Mass………….
2.3 Model Tests and Case Histories …………………..…………………..…….
2.3.1 Study of Gerber…………………………….………….…...
2.3.2 Study of Spangler…………………………………………..
2.3.3 Study of Rehnman and Broms………….………….……….
2.3.4 Study of Sherif and Mackey ………….…....…....…....…....………
2.3.5 Study of Smoltczyk et al. ………….………….…..…..….………...
2.3.5 Study of Van Den Berg………….………….………………………
2.4 Design Methods…………………………………………………………..
2.4.1 U.S. Navy Design Manual..………………………………...…...…
3 SURCHARGE LOADING SYSTEM……………………
3.1 Reaction Frame…………………………………………………………...
3.2 Vertical-force Loading System ….………………………………………
3.2.1 Air-Pressure Control Panel ………………………………………..
3.2.2 Air-Pressure Actuator ……………………………………………..
3.2.3 Load Cell ………………………………………………………….
3.3 Strip Footing …………………………………………………………….
3.3.1 Lid and Steel Footing ………………………………………………
3.3.2 Air-Cushion ………………………………………………………..
3.4 Settlement Measuring System ……………………………………………
4 EXPERIMENTAL APPARATUS ………………………
4.1 Non-Yielding Model Wall..……………………………………………….
4.2 Soil Bin …………………………………………………………………..
4.3 Data Acquisition System …………………………………………………
5 BACKFILL AND INTERFACE CHARACTERISTICS
5.1 Backfill Properties ……………………………………………………….
5.2 Control of Soil Density…………………………………………………..
5.2.1 Air-Pluviation of Backfill……………...…..……………..………...
5.2.2 Uniformity of Soil Density …….………………………………...
5.3 Backfill Properties ……………………………………………………….
6 EXPERIMENTAL RESULTS …………………………..
6.1 Earth Pressure At-Rest……………………………………………………
6.2 Utlimate Bearing Capacity of Air-Pluviated Backfill………………….…
6.2.1 Loose Sand …………………………………………………………
6.2.2 Medium Dense Sand ……………………………………………….
6.2.3 Dense Sand …………………………………………………………
6.3 Lateral Earth Pressure Induce by Surcharge Loading……………………
6.3.1 Effects of Surcharge Intensity…………………………..………….
6.3.2 Effects of Soil Density………..…………………………………….
6.3.3 Effects of Position of Surcharge …………………...………………
7 CONCLUSIONS ………………………………………...
References …………………………………………………………………...
Tables ………………………………………………………………………...
Figures ……………………………………………………………………….
Appendix A: Soil Pressure Transducer Calibration ……………………...
Appendix B: Load Cell Calibration ……………………….………………

1. Boussinesq, V. J., (1883), ”Application des Potential a L’Etude de L’Equilibre et due Mouvenent des Solides Elastiques,” Gauthier-Villars, Paris.
2. Bowles, J. E., (1988), “Foundation Analysis and Design,” 4th Edition, McGraw-Hill Book Co.,pp. 474.
3. Bros, B., (1972), “The Influence of Model Retaining Wall Displacement on Active and Passive Earth Pressures in Sand,” Proc., 5th European Conf. On Soil Mechanics, Madrid, Vol. 1, pp. 241-249.
4. Burgess, G. P.,(1999), “Performance of Two Full-scale Model Geosynthetic Reinforced Segmental Retaining Walls,” Master Thesis, Royal Military College of Canada, Kingston, Ontario, p. 207.
5. Chang, S. Y., (2000), “Effects of Backfill Compaction on Active Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
6. Chen, H., R., (1997), “Earth Pressure At-Rest with Different Soil Densities and Backfill Inclinations,” Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.bvnmm
7. Das, B. M., (1983), Advance Soil Mechanics, Publishing Company, McGraw-Hill.
8. Das, B. M., (1994), “ Principal of Geotechnical Engineering,”, 3rd Edition, PWS Publishing Company, Boston.
9. Fang, Y. S., Chen, J. M., and Chen, C. Y., (1997), “Earth Pressures with Sloping Backfill,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 3, March, pp. 250-259.
10. Fang, Y. S., Chen, T. J., Holtz, R. D., and Lee, W. F., (2002), “Reduction of Boundary Friction in Model Tests,” Submitted to Geotechnical Testing Journal, ASTM.
11. Gerber, E. (1929), “Untersuchungen uber die Druckverteilung im ortlichen belasteten Sand,” Zurich, Switzerland.
12. Hendron, A. J., (1963), “The Behavior of Sand in One-Dimensional Compression,” Ph. D. Thesis, Univ. Illinois, 285 pp.
13. Ho, Y. C., (1999), “Effects of Backfill Compaction on Passive Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
14. Jaky, J., (1944), “The Coefficient of Earth Pressure at Rest,” Journal for Society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp. 355-358.
15. Jaky, J., (1948), “Pressure in Soils,” Proceedings, 2nd International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 103-107.
16. Jurgenson, L. (1934) The application of theories of elasticity and plasticity to foundation problems. Contributions to Soil Mechanics 1925-1940. Boston Society of Civil Engineers.
17. Kulhawy, F. H.(1983) ”Transmission Line Structure Foundations for Uplift-Compression Loading,” Report No. 119 El-2870, Electric Power Reasearch Insitute, Palo Alto, CA.
18. Kumbhojkar, A. S., (1993) “ Numerical Elavuation of Terzaghi’s N,” Journal of Geotechnical Engineering, American Society of Civil Engineering, Vol. 119, No. 3, pp. 598-607
19. Lambe, T. W. and Whitman, R. V.,(1969), Soil Mechanics, John Wiely & Sons, New York.
20. Lee C. C., (1998), “Passive Earth Pressure with Various Backfill Densities”, Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.
21. Lo Presti, D. C. F., Berardi, R., Pedroni, S., and Crippa, V., (1993), “A New Traveling Sand Pluviator to Reconstitute Specimens of Well-Graded Silty Sands,” Geotechnical Testing Journal, ASTM, Vol. 16, No. 1, pp.18-26
22. Mackey, R. D., and Kirk, D. P., (1967), “At Rest, Active and Passive Earth Pressures,” Proceedings, South East Asian Conference on Soil Mechanics and Foundation Engineering, Bangkok, pp. 187-199.
23. Matteotti, G., (1970), “Some Results of Quay-Wall Model Tests on Earth Pressure,” Proc., Institution of Civil Engineers, Vol. 47, pp. 185-204.
24. Mayne, P. W. and Kulhawy, F. H., (1982), “ K0 - OCR relationships in soils,” Journal of Geotechnical Engineering, Division, ASCE, Vol. 108, No. GT6, June., pp. 851-873.
25. McElory, J. A., 1997, “Seismic Stability of Geosynthetic Reinforced Slopes: A Shaking Table Study”, Master Thesis, University of Washington, Seattle.
26. Mesri, G., and Hayat, T. M., (1993), “The Earth Pressure at Rest,” Canadian Geotechnical Journal, Vol. 30, No. 4, August, pp. 647-666.
27. Meyerhof, G. G. (1956). “ Some Recent Reach on the Bearing Capacity of Foundations,” Canadian Geotechnical Journal, Vol. 1, No.1, pp.16-26
28. Mindlin, R. D. (1936), “Discussion: Pressure Distribution on Retaining walls,” 1st ICSMFE, vol.3, pp. 155-156
29. Van DEN BERG (1991), “Effects of surface loading behind earth retaining walls,” Deformation of Soils and Displacements of Structures, Volume 11, pp.767-771.
30. Rad, N. S. and Tumay, M. T., (1987), “Factors Affecting Sand Specimen Preparation by Raining,” Geotechnical Testing Journal, ASTM, Vol. 10, No.1, pp.31-37
31. Rowe, P. W., (1954), “A Stress Strain Theory for Cohesionless Soil with Applications to Earth Pressures At Rest and Moving Walls,” Geotechnique, Vol. 4, pp. 70-88.
32. Rehnman, S. E. and Broms, B. B. ,(1972), “ Lateral Pressures on Basement Wall. Result from Full-Scale Tests,” Proc. 5th European Conf. SMFE, vol. 1, pp.189-197.
33. Sherif, M. M. and Mackey, R. D., (1977), ”Pressure on the Retaining Wall with Repeated Loading,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103 no, GT11, pp. 1341-1345.
34. Sherif, M. A., Fang, Y. S., and Sherif, R. I., (1984), ”Ka and Ko behind Rotating and Non-Yielding Walls,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 1, Jan., pp. 41-56.
35. Smoltczyk, U.; Vogt, N.; Hilmer, K., (1979), "Lateral Earth Pressure Due to Surcharge Loads," Proceedings of the European Conference on Soil Mechanics and Foundation Engineering ,Vol 2 Sept, pp. 131-139
36. Sowers, G. B., and Sowers, G. F., (1961), Introductiory Soil Mechanics and Foundations, Macmillan New York, pp. 386.
37. Spangler, M. G. (1936), “the Distribution of Normal Pressure on a Retaining Walls Due to a Concentrated Surface loads,” 1st ICSMFE, vol.1 pp.200-207
38. Spangler, M. G.U(1938) “Horizontal Pressure on Retaining Walls Due to Concentrated Surface Loads,” Bulletin No. 140, Iowa Engineering experiment Station, Ames, Iowa,1938.
39. Spangler, M. G. and Mickle, J. L. (1956), “Lateral Pressures on Retaining Walls Due to Backfill Surface Loads,” Highway Research Board 141 1-18.
40. Spangler, M. G. and Handy, R. L., (1982), “Soil Engineering 4th Edition,” Publishing, Harper & Row ,Publishing company.
41. Tatsuoka, F., Okahara, M., Tanaka, T., Tani, K., Morimoto, T. and Siddiquee, M. S. A. (1991), “Porgressive Failure and Particle Size Effect in Bearing Capacity of a Footing on Sand,” Proc. ASCE Geotech. Engineering Congress, Boulder, ASCE GSP, Vol. 27, pp. 788-802
42. Terzaghi, K., (1943), Theoretical soil Mechanics, Wiley, New York.
43. Terzaghi, K., (1954), “Anchored bulkhesds”, Transactions, ASCE. 119, Paper No. 2720.
44. Terzaghi, K. and Peck, R. B. (1948), Soil Mechanics in Engineering Practice, 1st ed. John Wiley, New York. pp. 312-318.
45. Tschebotarioff, G. B, (1973) ,Foundations, Retaining and Earth Structures, 2nd ed. McGraw-Hill Book Co. New York.
46. US NAVY, (1982), Foundation and Earth Structures, NAVFAC Design Manual DM-7.2, Washington, D. C., pp. 73-74.
47. Canadian Geotechnical Society, (1985), Canadian Foundation Engineering Manual 2nd edition, pp. 380-381
48. Vaid, Y. P., and Negussey, D., (1984), “Relative Density of Pluviated Sand Samples,” Soils and Foundations, JSSMFE, Vol. 24, No. 2, pp.101-105
49. Vesic, A. S. (1973), “ Analysis of Ultimate Loads of Shallow Foundations,” Journal of the soil Mechanics and Foundations Division, ASCE, Vol. 99 No. SM1, pp. 45-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 方德隆(2000)。課程統整的模式與實務。高雄師大學報,11,頁181-212。
2. 吳清山(1999)。推行「國民教育階段九年一貫課程」學校行政配合之探究。教育研究資訊,7(1),頁14-21。
3. 吳清山(1997)。學習型組織理論極其對教育革新的啟示。國教月刊,43(5、6),頁1-7。
4. 吳志正(2000)。公民營企業之權力決策模式與績效之相關性研究。全球企業,13,頁1-14。
5. 白雲霞(2000)。混沌理論對學校本位課程發展之啟示─從學校行政的觀點。教育研究月刊,88,頁45-54。
6. 王麗雲、潘慧玲(2000)。教師彰權益能的概念與實施策略。教育研究集刊,44,頁172-198。
7. 王慧蘭(1999)。教育政策社會學初探。教育研究資訊,7(3),頁87-108。
8. 王慶中(1999)。教育改革與反作用力。應用心理研究,1,頁129-162。
9. 林明地(1999)。重建學校領導的倫理學觀念。教育政策論壇,4,頁207-226。
10. 洪如玉(2001)。社會正義與九年一貫課程綱要─一個知識論角度的反思。人文及社會學科教學通訊,11(4)。頁89-108。
11. 孫本初(1995)。學習型組織的內涵與應用。空大行政學報,3。頁1-17。
12. 張亞中(2000)。全球治理:主體與權力的解析。問題與研究,40(4)。頁2-24。
13. 張復興(1999)。教育鬆綁外一章--「談教師法施行後的校園生態」。學校行政,2,頁68-72。
14. 張葆清(1999)。淺析科層體制權力之本質及來源。人事管理,36(9),頁48-59。
15. 莊明貞(2000)。九年一貫試辦課程實施:問題與因應策略之分析。教育研究月刊,85,頁27-41。
 
系統版面圖檔 系統版面圖檔