跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正宙
研究生(外文):Cheng-Chou Chang
論文名稱:多頻道表面波震測之研究
論文名稱(外文):Development of Multi-channel Surface Wave Seismic Survey
指導教授:林志平林志平引用關係
指導教授(外文):Chih-Ping Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:多頻道式表面波量測法
外文關鍵詞:multi-channel surface wave seismic survey
相關次數:
  • 被引用被引用:27
  • 點閱點閱:634
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:1
傳統之工址調查常需藉助地質鑽探、土壤取樣及室內試驗,以瞭解地下土層之物理性質及力學特性,但這類試驗通常費時、昂貴且取樣體積小,同時擾動後之土壤亦對可能試驗結果產生若干影響,故均屬於破壞性探測法;至於地球物理探測法則屬於非破壞性探測法,可提供快速、經濟且施測容易之試驗方式,以作為傳統鑽探試驗之輔助調查工具,同時在無法進行鑽孔探測之工址中,更可彌補傳統鑽探試驗受地層構造限制之缺憾,並可有效量測大範圍工址之淺部地層構造及波速度分層。
新近發展之多頻道式表面波量測法,乃透過一串受波器及震源之野外試驗配置幾何中,由折射震測儀記錄其震波資料,並利用先進之二維訊號識別技術以計算頻散關係曲線,而後假設土層參數之模型並透過自動化之反算分析流程,以求得試驗土層之平均剪力波速度剖面,進而推求其剪力模數,故現已倍受學術及工程界之重視。
本研究之目的,即探討不同施測參數對震測資料擷取之影響,並決定適當之施測參數配置準則,以減少近域效應、遠域效應、空間之映頻混擾等影響,並依此判定頻散關係曲線之有效範圍;此外由不同分析方法對頻散關係曲線之結果比較中,決定最佳之分析方法,同時定義震測資料之訊號雜訊比;最後由上述之成果中,決定野外試驗之測線配置方式,並依現場之工址條件而採用不同型式之施測方式。
Traditional site characterization utilizes exploratory boring, sampling, and laboratory experiment to investigate the physical and mechanical properties of the underground. These methods are time-consuming, costly, invasive, and have limited sampling volume. The materials under test are typically disturbed. Geophysical field methods, however, are non-invasive, usually fast, inexpensive, easy-to-perform, and sampling a large volume. Hence, the latter can effectively assist the traditional exploration methods or replace them at sites where borings may not be permitted.
Among several geophysical methods, multi-channel surface wave seismic survey has recently been developed to measure underground shear-wave velocity profile. A refraction seismograph records the seismic signals with geophones equally spaced in a survey line. The signals are analyzed using an advanced 2-D signal pattern recognition technique to efficiently and accurately calculate the dispersion curve of the surface wave. The shear-wave velocity profile can then be automatically inverted from the experimental dispersion curve, and the shear modulus can be further estimated. This method possesses many important applications for site investigation and earthquake engineering.
The primary objective of this research was to study the effect of field configuration on the measurement and compare different analysis methods for the dispersion curve. Parametric studies result in a general guideline for the field data acquisition. The wavefield transformation was found to be most efficient to covert surface wave on a shot gather directly into images of dispersion curves. The signal-to-noise ratio of the dispersion curve determined from the wavefield transformation was also defined. Test procedures that combine traditional seismic methods such as refraction and reflection methods are suggested. A case study was presented to demonstrate the capability of this new technique in estimating the liquefaction potential in gravelly soils. Another case study demonstrated how to measure shear wave and compression wave velocity simultaneously with a refraction array using surface wave analysis and first arrival time tomography.
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
1.3 研究流程 6
第二章 文獻回顧 8
2.1 土壤之動態剪力性質 8
2.2 波傳基本原理 9
2.3 現地震波探測 12
2.3.1 破壞性試驗 12
2.3.1.1 鑽孔式探測法 13
2.3.1.2 貫入式探測法 15
2.3.2 非破壞性試驗 15
2.3.2.1 實體波震測法 16
2.3.2.2 表面波震測法 17
2.4 穩態振動表面波法 18
2.5 表面波譜分析法 20
2.5.1 頻譜分析 20
2.5.2 測線配置方式 22
2.6 可控震源式表面波譜分析法 24
2.7 連續表面波量測法 25
2.8 多頻道式表面波量測法 26
2.8.1 表面波譜分析法 26
2.8.2 連續表面波量測法 27
2.8.3 多頻道式之慢度頻率轉換法 28
2.8.4 多頻道式之泛音分析法 30
第三章 研究方法 54
3.1 試驗儀器與資料擷取 54
3.1.1 試驗儀器 54
3.1.2 資料擷取 58
3.2 施測因子 60
3.2.1 近站支距 61
3.2.2 受波器間距 61
3.2.3 遠站支距 62
3.2.4 撞擊能量 63
3.2.5 震測方向 64
3.3 理論參數研究 65
3.4 試驗參數研究 67
3.5 頻散曲線之比較 70
3.5.1 頻散曲線之比較方法 71
3.5.2 訊號雜訊比之定義 71
3.6 表面波施測方式 73
3.6.1 結合反射震測法 74
3.6.2 結合折射震測法 75
3.6.3 野外試驗流程 77
3.7 反算分析之介紹 79
第四章 結果與討論 100
4.1 理論施測參數研究 100
4.2 試驗施測參數研究 105
4.3 頻散曲線比較 116
4.3.1 分析方法之結果 117
4.3.2 分析方法之比較 121
4.3.3 訊號雜訊比之比較 124
4.4 野外試驗 129
4.4.1 結合反射震測之施測方法及其應用 130
4.4.2 結合折射震測之施測方法及其應用 134
第五章 結論與建議 194
5.1 結論 194
5.2 建議 197
參考文獻 199
附錄A 台灣中部地區多頻道表面波震測之測線位置與試驗結果 210
王乾盈 (2000),震波測勘學Ⅰ:反射震測,國立中央大學地球物理研究所,中壢中央大學,民國八十九年。
王乾盈 (2000),震波測勘學Ⅱ:折射震測,國立中央大學地球物理研究所,中壢中央大學,民國八十九年。
王乾盈 (2001),「以淺層反射震測剖面輔助地質鑽井」,地工技術,第86期,第63~72頁,民國九十年八月。
左天雄,林潔興,鄭福如,王宗文 (2001),「表面波頻散曲線之最佳化反算土層剪力波速」,第九屆大地工程學術研討會論文集,第A037-1~A037-9頁,桃園中壢,台灣,民國九十年八月三十日∼九月一日。
李咸亨、吳志明 (1990),「台北盆地土壤之動態性質研究(Ⅱ)∼下井探測法與剪力波速迴歸分析之探討」,行政院國家科學委員會,防災科技研究報告79-04號,編號NSC79-0414-P011-01B,第5到48頁,民國七十九年。
亞新工程顧問股份有限公司 (2000),「南投、霧峰地區土壤液化調查研究」,行政院國家科學委員會,民國八十九年。
林志平,張正宙,林智勇 (2002),「震測試驗在台灣中部地區液化潛能評估中之應用」,台灣中部地區液化潛能評估研討會,第D-1~D-24頁,新竹交通大學,台灣,民國九十一年三月。
林炳森,張子修,張啟文 (2001),「礫石性砂土液化潛能分析之研究」,集集地震土壤液化總評估研究∼八十九學年度期中研究成果研討會論文集,第F-1~F-19頁,國科會工程處地震工程尖端研究計畫群,新竹交通大學,台灣,民國九十年一月五日。
林進興,蘇百如 (2001),「表面波譜法(SASW)之實務與應用」,地工技術,第86期,第19~28頁,民國九十年八月。
洪如江 (1997),初等工程地質學大綱,第二版三刷,財團法人地工技術研究發展基金會,台北,民國八十六年九月。
倪勝火 (2001),「表面波譜法(SASW)之分析原理與應用」,地工技術,第86期,第5~18頁,民國九十年八月。
黃安斌 (2002),「台灣中部地區顆粒性土壤之動態行為以及其液化評估試驗方法之選擇」,台灣中部地區液化潛能評估研討會,第A-1~A-27頁,新竹交通大學,台灣,民國九十一年三月。
蘇誌宗 (2000),「軟弱岩層之現地力學及水力性質」,國立交通大學,碩士論文,民國八十九年。
Aki, K. and Richards, P. G. (1980), Quantitative Seismology: Theory and Methods — 2 Volume, Freeman, San Francisco, 1980.
Andrus, R. D. and Stokoe, II K. H. (1997), “Liquefaction Resistance Base on Shear Wave Velocity”, Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, Buffalo, pp. 89~128, 1997.
Andrus, R. D. and Stokoe, II K. H. (1998), “Liquefaction Resistance Based on Shear Wave Velocity”, Preprint of a Paper Delivered at the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nation Center for Earthquake Engineering Research, Buffalo, New York, 1998.
Andrus, R. D. and Stokoe, II K. H. (1999), “Lecture Notes: Evaluating Liquefaction Resistance Using Shear Wave Velocity Measurements and Simplified Procedures”, Prepared for the TB Workshop on New Approaches to Liquefaction Analysis, 10 January, 1999.
Andrus, R. D. and Stokoe, II K. H. (2000), “Liquefaction Resistance of Soils from Shear-Wave Velocity”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015~1025, ASCE, November, 2000.
Ballard, R. F. (1964), “Determination of Soil Shear Moduli at Depth by in situ Vibratory Techniques”, Waterways Experiment Station, Miscellaneous Paper No. 4~691, December, 1964.
Bolt, B. A. (1978), Earthquakes: A Primer. Freeman, W.H. and Company, San Francisco, 1978.
Chapman, C. H. (1978), “A New Method for Computing Synthetic Seismograms”, Geophysical Journal, Vol. 54, pp. 481~518, 1978.
Coruh, C. (1985), “Stretched Automatic Amplitude Adjustment of Seismic Data”, Geophysics, Vol. 50, pp. 252~256, 1985.
Das, B. M. (1983), Advanced Soil Mechanics, McGraw-Hill Companies, United States, 1983.
Das, B. M. (1992), Principles of Soil Dynamics, PWS-KENT Publishing Company, Boston, 1992.
Dorby, R. and Vucetic, M. (1987), “Dynamic Properties and Seismic Response of Soft Clay Deposits”, Proceedings, International Symposium on Geotechnical Engineering of Soft Soils, Mexico City, Vol. 2, pp. 51~87, 1987.
Foti, S. (2000), “Multistation Methods for Geotechnical Characterization using Surface Waves”, Politecnico di Torino, Ph. D. Dissertation, February, 2000.
Gabriels, P. and Snieder, R. and Nolet, G. (1978), “In situ Measurements of Shear-Wave Velocity in Sediments with Higher-Mode Rayleigh Waves”, Geophysical Prospecting, Vol. 35, pp. 187~196, 1987.
Ganji, V., Gucunski, N. and Maher, A. (1997), “Detection of Underground Obstacles by SASW Method: Numerical Aspects”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 3, pp. 212~219, ASCE, March, 1997.
Golesorkhi, R. (1989), “Factors Influencing the Computational Determination of Earthquake-Induced Shear Stresses in Sandy Soils”, Ph. D. Dissertation, University of California, Berkeley, 1989.
Gucunski, N. (1991), “Generation of Low Frequency Rayleigh Waves for the Spectral-Analysis-of-Surface-Waves Method”, Ph. D. Dissertation, Department of Civil Engineering, The University of Michigan, 1991.
Gucunski, N. and Woods, R. D. (1991), “Instrumentation for SASW Testing”, Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, Geotechnical Special Publication No. 29, pp. 1~16, ASCE, 1991.
Gucunski, N. and Woods, R. D. (1991), “Inversion of Rayleigh Wave Dispersion Curve for SASW Test”, Soil Dynamics and Earthquake Engineering, Vol. 1, pp. 127~138, 1991.
Gucunski, N. and Woods, R. D. (1992), “Numerical Simulation of SASW Test”, Soil Dynamics and Earthquake Engineering, Vol. 11, No. 4, pp. 213~227, 1992.
Gucunski, N., Ganji, V. and Maher, M. H. (1996), “Effects of Obstacles on Rayleigh Wave Dispersion Obtained from the SASW Test”, Soil Dynamics and Earthquake Engineering, Vol. 15, No. 4, pp. 223~231, 1996.
Hardin, B. O. and Drnevich, V. P. (1972), “Shear Modulus and Damping in Soils: Measurement and Parameter Effects”, Journal of Soil Mechanics and Foundations Division, Pcoceedings of the American Society of Civil Engineers, Vol. 98, No. 6, pp. 603~624, June, 1972.
Hardin, B. O. and Drnevich, V. P. (1972), “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of Soil Mechanics and Foundations Division, Pcoceedings of the American Society of Civil Engineers, Vol. 98, No. 7, pp. 667~692, July, 1972.
Haskell, N. A. (1953), “The Dispersion of Surface Waves in Multilayered Media”, Bulletin of the Seismological Society of America, Vol. 43, No. 1, pp. 17~34, 1953.
Heisey, J. S., Stokoe, II K. H., Hudson, W. R. and Meyer, A. H. (1982), “Determination of in situ Shear Wave Velocities from Spectral Analysis of Surface Waves”, Research Report No. 256-2, Center for Transformation Research, The University of Texas at Austin, December, 1982.
Hepton, P. (1988), “Shear Wave Velocity Measurements during Penetration Testing”, Penetration Testing is the UK, pp. 275~278, Thomas Telford, London, 1988.
Hiltunen, D. R. (1988), “Experimental Evaluation of Variables Affecting the Testing of Pavements by the Spectral-Analysis-of-Surface-Waves Method”, Ph. D. Dissertation, Civil Engineering Department, The University of Michigan, 1988.
Hiltunen, D. R. and Woods, R. D. (1990), “Influence of Source and Receiver Geometry on the Testing of Pavements by the Surface Waves Method”, A Paper Prepared for Presentation at the 69th Annual Meeting of the Transportation Research Board, Washington, D.C., January, 1990.
Hitunen, D. R. and Gucunski, N. (1994), “Annotated Bibliography on SASW”, XIII ISSMFE, Vol. Prepared by ISSMFE Technical Committee #10, pp. 27~34, New Delhi, India, 1994.
Idriss, I. M. (1999), “Presentation Notes: An Update of the Seed-Idriss Simplified Procedure for Evaluating Liquefaction Potential”, Transportation Research Board ‘99 Workshop on New Approaches to Liquefaction Analysis, Public No. FHWA-RD-99-165, Federal Highway Administration, Washington, D.C., 1999.
Joh, S.-H. (1996), “Advances in Interpretation and Analysis Techniques for Spectral-Analysis-of-Sueface-Waves Measurements”, Ph. D. Dissertaion, The University of Texas at Austin, Texas, 1996.
Jones, R. B. (1958), “In-situ Measurement of the Dynamic Properties of Soil by Vibration Methods”, Geotechnique, Vol. 8, No. 1, pp. 1~21, 1958.
Jones, R. B. (1962), “Surface Wave Technique for Measuring the Elastic Properties and Thickness of Roads: Theoretical Development”, British Journal of Applied Physics, Vol. 13, pp. 21~29, 1962.
Kausel, E. and Peek, R. (1982), “Dynamic Loads in the Interior of a Layered Stratum: an Explicit Solution”, Bulletin of Seismology Society of America, Vol. 72, pp. 1459~1508, 1982.
Kausel, E. and Roesset, J. M. (1981), “Stiffness Matrices for Layered Soils”, Bulletin of Seismology Society of America, Vol. 71, pp. 1743~1761, 1981.
Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice-Hill Publishing Company, New Jersey, 1996.
Levenberg, K. (1944), “A Method for the Solution of Certain Nonlinear Problems in Least Squares”, Quart of Applied Mathematics, Vol. 2, pp. 164~168, 1944.
Luna, R. and Jadi, H. (2000), “Determination of Dynamic Soil Properties Using Geophysical Methods”, Geophysics 2000, St. Louis, Missouri, December 15, 2000.
Marquardt, D.W. (1963), “An Algorithm for Least Squares Estimation of Nonlinear Parameters”, Journal of Society Industrial Applied Mathematics, Vol. 2, pp.431~441, 1963.
Matthews, M. C., Hope, V. S. and Clayton, C. R. I. (1996), “The Use of Surface Waves in the Determination of Ground Stiffness Profiles”, Geotechnical Engineering, The Proceedings of the Institute of Civil Engineering, Vol. 119, pp. 84~95, 1996.
McMechan, G. A. and Yedlin, M. J. (1981), “Analysis of Dispersive Waves by Wave Field Transformation”, Geophysics, Vol. 46, No. 6, pp. 869~874, SEG, June, 1981.
Menzies, B. K. and Mattews, M. C. (1996), “The Continuous Sufrace-Wave System: A Modern Technique for Site Investigation”, Special Lecture: Indian Geotechnical Conference Madrsa, Decomber 11-14, 1996.
Miller, R.D. and Xia, J. (1997), “High Resolution Seismic Reflection Survey to Map Bedrock and Glacial/Fluvial Layers at the U.S. Navy Northern Ordnance Plant (NIROP) in Fridley, Minnesota”, Final Report to U.S. Geological Survey — WRD Mound View, Minnesota, Open-file Report No. 97-12, February 6, 1997.
Miller, R.D. and Xia, J. et al. (1999), “Using MASW to Map Bedrock in Olathe, Kansas”, Final Report to Harding Lawson Associates, Missouri, America, May 10, 1999.
Mokhtar, T. A., Herrrnann, R. B. and Russel, D. R. (1998), “Seismic Velocity and Q Model for the Shallow Structure of the Arabian Shield from Short-Period Rayleigh Waves”, Geophysics, Vol. 53, pp. 1379~1387, 1998.
Nazarian, S. and Desai, M. R. (1993), “Automated Surface Wave Method: Field Testing”, Journal of Geotechnical Engineering, Vol. 119, No. 7, pp. 1094~1111, ASCE, July, 1993.
Nazarian, S., Stokoe, II K. H. and Hudson, W. R. (1983), “Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems”, Transportation Research Record, Vol. 930, pp. 38~45, 1983.
Nazzrian, S. (1984), “In Situ Determination of Elastic Moduli of Soil Deposits and Pavement Systems by Spectral-Analysis-of-Surface-Waves Method”, Ph. D. Thesis, The University of Texas at Austin, Texas, 1984.
Nigbor, R. L. and Imai, T. (1994), “The Suspension PS Velocity Logging Method: Geophysical Characterization of Sites”, Volume Prepared by ISSMFE, Technical Committee #10, XIII ICSMFE, New Delhi, India, pp. 57~64, 1994.
Ohta, Y. and Goto. N. (1978), “Physical background of the Statistically Obtained S-wave Velocity Equation in terms of Soil Indexes”, Butsuri-Tanko (Geophysical Exploration), Vol. 31, No. 1, pp. 8~17 (in Japanese), Tokyo, 1978.
Park, C. B., Miller, R. D. and Xia, J. (1998), “Imaging Dispersion Curves of Surface Waves on Multi-channel Record”, 68th Annual International Meeting, pp. 1377~1380, 1998 SEG Expanded Abstracts, 1998.
Park, C. B., Miller, R. D. and Xia, J. (1999), “Multichannel Analysis of Surface Waves”, Geophysics, Vol. 64, No. 3, pp. 800~808, SEG, May~June, 1999.
Park, C. B., Miller, R., Brohammer, M., Xia, J. and Ivanov, J. (2000), Using SurfSeis 2000: For Multichannel Analysis of Surface Waves (MASW), Kansas Geological Survey, America, October, 2000.
Press, W. H., Teukosky, S. A., Vetterling, W. T. and Flannery, B. P. (1992), Numerical Recipes in C, Cambridge University Press, 1992.
Richart, F. E. Jr., Wood, R. D. and Hall, J. R. Jr. (1970), Vibration of Soils and Foundations, Prentice-Hall Publishing Company, New Jersey, 1970.
Rix, G. J. and Leipski, E. A. (1991), “Accuracy and Resolution of Surface Wave Inversion”, Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, pp. 17~32, ASCE, 1991.
Rix, G.J. (1988), “Experimental Study of Factors Affetting the Spectral-Analysis-of-Surface-Waves Method”, Ph. D. Dissertation, University of Texas at Austin, 1988.
Robertson, P. K., Campanella, R. C., Gillespie, D. and Rice, A. (1986), “Seismic CPT to Measure in situ Shear Wave Velocity”, Journal of Geotechnical Engineering, Vol. 112, pp. 791~803, ASCE, August, 1986.
Roesset, J. M., Chang, D. W., Stokoe, II K. H. and Aouad, M. (1989), “Modulus and Thickness of the Pavement Surface Layer from SASW Tests”, Transportation Research Record, No. 1260, pp. 53~63, 1989.
Rollins, K. M., Evans, M. D., Diehl, N. B. and Daily, III W. D. (1998), “Shear Modulus and Damping Relationships for Gravels”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, pp. 396~405, ASCE, 1998.
Satoh, T., Poran, C. J., Yamagata, K. and Rodriguez, J. A. (1991), “Soil Profiling by Spectral Analysis of Surface Waves”, The Proceeding of 2th International Conference Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic, St. Louis, pp.1429~1434, 1991.
Schwab, F. A. and Knopoff, L. (1971), “Fast Surface Wave and Free Mode Computations”, in Bolt, B. A., Ed., Methods in Computational Physics: Academic Press, pp. 87~180, 1971.
Seed, H. B. and Idriss, I. M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of Soil Mechanics and Foundations Division, Vol. 97, No. 9, pp. 1249~1273, ASCE, 1971.
Stokoe, II K. H., Wright, S. G., Bay, J. A. and Roesset, J. M. (1994), “Characterization of Geotechnical Sites by SASW Method”, XIII ISSMFE, Vol. Prepared by ICSMFE Technical Committee #10, pp. 15~25, New Delhi, India, 1994.
Sykora, D. W. (1987), “Creation of a Data Base of Seismic Shear Wave Velocity for Correlation Analysis” Geotechnical Laboratory Miscellaneous Paper GL-87-26, U.S. Army Engineering Waterways Experiment Station, 1987.
Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, New York, Elsevier, 1987.
Thomson, W. T. (1950), “Transmission of Elastic Waves Through a Stratified Solid Medium”, Journal of Applied Physics, Vol. 21, No. 1, pp. 89~93, 1950.
Tokimatsu, K. (1995), “Geotechnical Site Characterization Using Surface Waves”, First International Conference on Earthquake Geotechnical Engineering, 1995.
Wang, G.-Q., Zhou, X.-Y., Zhang, P.-Z. and Igel, H. (2001), “Characteristics of Amplitude and Duration for Near Fault Strong Ground Motion from the 1999 Chi-Chi, Taiwan Earthquake”, Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 73~96, 4 August, 2001.
Waters, K. H. (1978), Reflection Seismology, John Wiley & Sons, Inc., 1978.
Xia, J., Miller, R. D. and Park, C. B. (1999), “Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves”, Geophysics, Vol. 64, No. 3, pp. 691~700, 1999.
Youd, T. L. and Noble, S. K. (1997), “Liquefaction Criteria Based on Statistical and Probabilistic Analysis”, Proceeding, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, Buffalo, pp. 201~215, 1997.
Yuan, D. and Nazarian, S. (1993), “Automated Surface Wave Method: Inversion Technique”, Journal of Geotechnical Engineering, Vol. 119, No. 7, pp. 1112~1126, ASCE, July, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top