跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧敏政
研究生(外文):Teng, Min-Cheng
論文名稱:FPS隔震儲存槽之試驗與分析
論文名稱(外文):Experimental study of seismic isolation of storage tanks using friction pendulum bearings
指導教授:王彥博
指導教授(外文):Yen-Po Wang
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:378
中文關鍵詞:振動台摩擦單擺支承隔震儲存槽
外文關鍵詞:shaking tablefriction pendulum bearingseismic isolationstorage tank
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:3
台灣位處環太平洋地震帶,對於石化儲存槽的耐震能力與安全檢核工作十分重要。世界各國的油槽遭受地震侵襲而受到嚴重損壞例子屢見不鮮,九二一集集地震國內亦有油槽遭受到嚴重損壞。歷經九二一集集地震侵襲後,吾人更應記取教訓,對於石化儲存槽之耐震設計標準勢必更為嚴苛。本文完成剛性隔震儲存槽之振動台試驗,確認摩擦單擺隔震支承於儲存槽防震應用之可行性,並驗證理論分析模式之合理性。本研究製作了直徑 1.36m,高2 m,容量3噸之儲存槽模型,利用交通大學土木系自行研發的地震模擬振動台進行一系列試驗,包括以El Centro、Hachinohe及Kobe等地震歷時資料為輸入震波,並調整不同之PGA強度進行測試,以探討地震頻率內函及地震強度對儲存槽隔震效益的影響。此外,在槽殼半徑(R)固定的情況下,考慮不同水位高度(H)進行試驗,以探討高徑比(H/R)對隔震效益之影響。試驗結果顯示,在各種地震下摩擦單擺支承對儲存槽均有減震效果,且地震強度愈大時減震效益愈明顯;而水位愈高時,減震效果也愈佳。此外,考慮剛性儲存槽之數值模擬分析與試驗結果有相當程度之契合,顯示本文所提理論分析模式能夠準確預測儲槽及流體在地震下之動力行為

Storage tanks are vulnerable to earthquakes, as demonstrated recently in Chi-Chi earthquake (1999) of Taiwan, and numerous other major earthquakes worldwide. Development of cost-effective earthquake-resistant design and retrofit techniques for industrial tanks is imperative in Taiwan, as the seismic design standard has been significantly enhanced in the post-Chi-Chi revision. In this study, a series of shaking table tests has been conducted to assess the feasibility of seismic base isolation for liquid-filled storage tanks experimentally. The friction pendulum bearings (FPS) are considered rather than the elastomeric bearings as the dynamic characteristics of an FPS-isolated tank remain unchanged regardless of the storage level. Experimental results show evident reductions in dynamic pressure on the shell wall of the tank consistently while isolated. Effectiveness of FPS for seismic isolation of storage tanks is confirmed. Moreover, numerical simulations carried out using a hybrid structural-hydrodynamic model previously devised agree well with the test results, indicating adequacy of the analytical model

ABSTRACT (IN CHINESE) I
ABSTRACT II
ACKNOWLEDGEMENT…………………………………………………………………………..III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VIII
INTRODUCTION 1
2. ANALYTICAL MODELLING 8
2.1 Hydrodynamics of Rigid Tanks 8
2.2 Hybrid Structural-hydrodynamic Systems of Base-Isolated Rigid Tanks 12
2.3 Numerical Analysis Algorithm 14
3. EXPERIMENTAL SETUP 18
3.1 Earthquake simulator- shaking table system 18
3.2 Control and Data Acquisition System 19
3.3 Construction of the Model Tank 19
3.4 Friction Pendulum Bearing 20
3.5 Instrumentations 20
3.6 Test program 22
4 EXPERIMENT ANALYSIS AND RESULTS 23
4.1 Test Results of Fix-Base Storage Tank 23
4.1.2 Seismic Performance Evaluation 31
4.1.3 Effects of Earthquake Intensity on Isolation 46
4.2 Numerical Analysis 47
4.2.1 The Dynamic Pressure without Seismic Isolation 48
4.2.2 Hysteretic Loop of Sliding Displacement and Base-Shear 54
5. CONCLUDING REMARKS 76
REFERENCES 77
TABLES………………………………………………………………………………………….…80
FIGURES.…………………………………………………………………………………………105
APPENDIX A.…………………………………………………………………………………….375
APPENDIX B.…………………………………………………………………………………….378

REFERENCES
1. Jia, ZH. and Ketter, RL. Experimental study of “elephant foot budge” instability of thin-walled metal tanks. Technical Report NCEER-89-004, SUNY/Buffalo, New York, 1989.
2. Liu, WK. and Uras, RA. Transient failure analysis of liquid-filled shells, part I: theory. Nuclear Engineering and Design, 1989; 117:107-139.
3. Liu, WK. and Uras, RA. Transient failure analysis of liquid-filled shells, part II: applications. Nuclear Engineering and Design, 1989; 117: 41-157.
4. Uras, RA. and Liu, WK. Dynamic stability characteristics of liquid-filled shells. Earthquake Engng Struct. Dyn. 1989; 18: 1219-1231.
5. Chiba, M., Tani, J., Hashimoto, H. and Sudo S. Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: experiment. Journal of Sound and Vibration. 1986; 104:301-319.
6. Uras, RA. and Liu, WK. Dynamic buckling of liquid-filled shell under horizontal excitation. J. Sound Vibration, 1990; 141(3): 389-408.
7. Liu, WK., Chen, YJ., Tsukimori, K. and Uras, RA. Recent advances in dynamic buckling analysis of liquid-filler shells. J. Pressure Vessel Technology. ASME. 1991; 113, May: 314-320.
8. Housner, GW. Dynamic pressure on accelerated fluid containers. Bulletin Seism. Soc. America. 1957;47(1):15-35.
9. Veletsos, AS. Seismic response and design of liquid storage tanks. Guidelines for the seismic design of oil and gas pipeline systems. Technical Council on Lifeline Earthquake Engineering, ASCE, New York, N.Y. 1984:255-370 and 443-461.
10. Tang, Yu. Dynamic response of tank containing two liquids. Journal of Engineering Mechanics, ASCE, 1993; 119, no. 3, March, pp. 531-548
11. Veletsos, AS. and Shivakumar, P. Sloshing response of layered liquids in rigid tanks. Earthquake Engineering & Structural Dynamics, 1993; 22, no. 9, Sep., pp. 801-821.
12. Veletsos, AS. and Shivakumar, P. Hydrodynamic effect in rigid tanks containing layered liquids. Earthquake Engng Struct. Dyn. 1995; 24, 835-860.
13. Shivakumar, P. and Veletsos, AS. Dynamic response of rigid tanks with inhomogeneous liquids. Earthquake Engng Struct. Dyn. 1995; 24, 991-1015.
14. Haroun, MA. Dynamic analyses of liquid storage tanks. California Institute of Technology. 1980.
15. Haroun, MA. and Housner, GW. Seismic design of liquid storage tanks. J. Technical Councils, ASCE. 1981; 107, TC1, April: 191-207.
16. Haroun, MA. and Housner, GW. Dynamic characteristics of liquid storage tanks. J. Engng Mech. Division, ASCE. 1982; 108, EM5, October: 783-818.
17. Haroun, MA. Vibration studies and tests of liquid storage tanks. Earthquake Engng Struct. Dyn. 1983; 11: 179-206.
18. Clough, DP. and Clough, RW. Earthquakes simulator studies of cylindrical tanks. Nuclear Engineering and Design, 1978; 46:367-380.
19. Younan, AH. and Veletsos, AS. Dynamics of solid-containing tanks I: rigid tanks. J. Struct. Engng. , ASCE. 1998; 124(1), January: 52-61.
20. Veletsos, AS. and Younan, AH. Dynamics of solid-containing tanks II: flexible tanks. J. Struct. Engng. , ASCE. 1998; 124(1), January: 62-70.
21. Malhotra, PK. and Veletsos, AS. Beam model for base-uplifting analysis of cylindrical tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3471-3488.
22. Malhotra, PK. and Veletsos, AS. Uplifting analysis of base plates in cylindrical tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3489-3505.
23. Malhotra, PK. and Veletsos, AS. Uplifting response of unanchored liquid-storage tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3525-3547.
24. Malhotra, PK. Seismic response of soil-supported unanchored liquid-storage tanks. J. Struct. Engng. , ASCE. 1997; 123(4), April: 440-450.
25. Malhotra, PK. and Veletsos, AS. Energy method for base uplifting analysis of liquid-storage tanks. J. Pressure Vessel Technology. , ASME. 1996; 118, August: 332-335.
26. Chalhoub, MS. And Kelly, JM. Shake table test of cylindrical water tanks in base-isolated structure. J. Engrg. Mech. , ASCE. 1990; 116(7): 1451-1472.
27. Bo, L. and Tang, JX. Vibration studies of base-isolated liquid storage tanks. Comp. And Struct. ,1994; 52(5):1051-1059.
28. Malhotra, PK. Method for seismic base isolation of liquid-storage tanks. J. Struct. Engng. , ASCE. 1997; 123(1), January: 113-116.
29. Malhotra, PK. New method for seismic isolation of liquid-storage tanks. Earthquake Engng Struct. Dyn. 1997; 26: 839-847.
30. Malhotra, PK. Seismic strengthening of liquid-storage tanks with energy-dissipating anchors. J. Struct. Engng. , ASCE. 1998; 124(4), April: 405-414.
31. Shenton, HW. and Hampton, FP. Seismic response of isolated elevated water tanks. J. Struct. Engng. , ASCE. 1999; 125(9), September: 965-976.
32. Park, JH. , Koh, HM. and Kim, JK. Seismic isolation of pool-type tanks for the storage of nuclear spent fuel assemblies. Nuclear Engineering and Design. 2000; 199:143-154.
33. Zayas, VA. and Low, SS. Application of seismic isolation to industrial tanks, PVP- Seismic, Shock, and Vibration Isolation, ASME 1995; 319:273-288.
34. Wang, YP. , Teng, MC. and Chung KW. Seismic isolation of rigid cylindrical tanks using friction pendulum bearings. Earthquake Engng Struct. Dyn. 2001; 30(7): 1083-1099.
35. Wang, Yen-Po, Min-Cheng Teng and Kuo-Whie Chung. Experimental Study of Seismic Isolation of Rigid Cylindrical Tanks Using Friction Pendulum Bearings. Proceedings of the Workshop on Diagnosis, Analysis and Control of Vibration and Noise, Shanghai, October,2001; 26-28.
36. Craig, R.R. Structural dynamics- an introduction to computer methods. John Wiely & Sons, Inc., 1981.
37. Wang, YP, Chung, LL, and Liao, WH. Seismic response analysis of bridges isolated with friction pendulum bearing. Earthquake Engng Struct. Dyn. 1998; 27: 1069-1093.
38. Wang, YP and Liao, WH. Dynamic analysis of sliding structures with unsynchronized support motions. Earthquake Engng Struct. Dyn. 2000; 29: 297-313.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top