(3.232.129.123) 您好!臺灣時間:2021/02/26 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏聖益
研究生(外文):Sheng-I Yen
論文名稱:包覆型鋼骨鋼筋混凝土構材之強度與力學行為
論文名稱(外文):STRENGTH AND BEHAVIOR OF CONCRETE ENCASED COMPOSITE STRUCTURAL MEMBERS
指導教授:翁 正 強
指導教授(外文):C. C. Weng
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:115
中文關鍵詞:包覆型鋼骨鋼筋混凝土構材試驗研究剪力握裹破壞斜張剪力破壞強度疊加法ACI設計規範AISC設計規範
外文關鍵詞:Concrete Encased Composite MemberExperimental StudyShear Bond FailureDiagonal Shear FailureStrength Superposition ApproachACI CodeAISC Specification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:363
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:1
本研究致力於探討包覆型鋼骨鋼筋混凝土結構之構材強度與力學行為。論文中主要包含兩項研究課題,其一為包覆型鋼骨鋼筋混凝土構材之剪力強度與力學行為之研究;其二則是軸力與彎矩共同作用下鋼骨鋼筋混凝土構材極限強度與行為之研究。
第一個主題中,本論文進行共計九支包覆型鋼骨鋼筋混凝土梁剪力握裹破壞試驗。試驗結果發現計有五支試體發生沿著鋼骨翼板的水平裂縫(本研究稱之為剪力握裹破壞)。試驗觀察發現「鋼骨翼寬比」(係指鋼骨翼板寬度與構材全斷面寬度之比值)對此種包覆型鋼骨鋼筋混凝土梁的破壞形式有關鍵的影響。
根據實驗之觀察,本研究提出一理論分析模式來預測鋼骨鋼筋混凝土構材之剪力握裹破壞。為驗證理論模式預測結果的準確性,本研究藉由上述之試驗結果與前人之實驗資料來進行比較分析。分析結果發現,本研究所建議之理論分析模式可以合理的預測包覆型鋼骨鋼筋混凝土構材剪力握裹破壞。
在探討包覆型鋼骨鋼筋混凝土構材之剪力極限強度時,本研究考慮了前述之剪力握裹破壞與傳統的斜張剪力破壞兩種失敗模式,並且提出預測剪力強度之方法。初步結果顯示,本研究之建議法可合理的預測鋼骨鋼筋混凝土構材之剪力強度,並適當的考量了剪力握裹破壞與斜張剪力破壞兩種失敗模式。此外,本研究並提出一稱為「臨界翼寬比」(critical steel flange ratio)的新參數,藉由該參數可使得剪力握裹破壞與斜張剪力破壞的預測更為簡便。
在第二個主題中,本研究首先探討美國ACI-318與AISC-LRFD設計規範,對於受軸力與彎矩共同作用之包覆型鋼骨鋼筋混凝土構材極限強度計算方法,並比較其計算結果的差異性。從力學行為的觀點而言,作者發現以AISC純鋼骨設計公式或以ACI純鋼筋混凝土設計公式來預測包覆型鋼骨鋼筋混凝土構材極限強度似隱含著許多值得改進的問題。基於上述考量,本研究乃進一步提出一個新的預測方法,該法以強度疊加概念為基礎將包覆型鋼骨鋼筋混凝土構材中鋼筋混凝土與鋼骨部分之強度分別依ACI-318與AISC-LRFD規範中相關規定計算,再予疊加,以求得鋼骨鋼筋混凝土構材之強度。
本法的另一特點係依據材料力學之基本原理,將作用於包覆型鋼骨鋼筋混凝土構材之軸力依鋼骨與鋼筋混凝土的相對剛度比例分配之。然後將鋼骨及鋼筋混凝土所受之軸力分別代入AISC-LRFD與ACI-318設計規範中之P-M交互公式中,分別求得鋼骨與鋼筋混凝土個別的彎矩再予疊加。為驗證本法之準確性,本研究將本法之預測結果分別與數值分析法及前人之試驗結果進行比較。比較結果顯示,本法在預測包覆型鋼骨鋼筋混凝土構材之極限強度上可獲致令人滿意之結果。
This thesis is devoted to the investigation of the strength and behavior of concrete encased composite structural members. Two major topics are involved in this study. The first is a study on the shear strength and behavior of the composite members; and the second is a study on the strength and behavior of the composite members under combined compression and bending.
In the first topic, an experimental study that focuses on the shear bond failure of concrete encased composite beams is performed. Nine full-scale specimens were constructed and tested in this study. Significant horizontal cracks along the interface of steel flange and concrete, referred to as the shear bond failure, appeared in five tested specimens. Observations from the experiments indicate that “the steel flange width ratio”, defined as the ratio of steel flange width to gross section width (bf / B), has a dominant effect on the shear bond failure of the composite beams.
Then, an analytical model for predicting the shear bond failure mode of the composite members is presented in this study. To evaluate the accuracy of this model, a verification analysis is made by comparing the failure modes predicted by the proposed model to those observed from the tested specimens. The results of the analysis indicate that the proposed analytical model gives satisfactory prediction on the shear bond failure of the composite members.
Through the understanding of the shear bond failure mechanism of the composite members, a new design approach is proposed to predict the shear capacities of the composite members. The newly observed shear bond failure mode and the conventional diagonal shear failure mode are taken into account in the proposed approach. This approach yields satisfactory predictions of the shear strength of a composite member and also provides rational explanations to the mechanism of shear bond failure. A new term called “the critical steel flange ratio” is introduced in the proposed approach to distinguish the shear bond failure from the conventional diagonal shear failure.
In the second topic, the composite column strength provisions of ACI-318 code and AISC-LRFD specification are investigated. It is noted that using the design procedures analogous for pure reinforced concrete or for pure steel to design a composite column can be somehow misleading. Therefore, this study develops a new strength superposition approach that combines the AISC-LRFD specification and the ACI-318 code to predict the strength of the concrete encased composite columns.
Based on the fundamental theory of mechanics of materials, the proposed approach also considers the relative rigidities of the steel and the RC portions in the composite column to determine the external loads shared by the steel and the RC parts. To evaluate the performance of the proposed method, comparisons between the values predicted by the proposed method and those calculated by a numerical fiber analysis are made. In addition, test results done by previous researchers are also collected to evaluate the accuracy of the proposed method. The comparative results show that the proposed approach gives satisfactory predictions of the strengths of the composite columns.
Abstract
摘 要
Acknowledgements
Table of Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Background and Significance
1.2 Organization of the dissertation
Chapter 2 Experimental Study on Shear Bond Failure of Full-Scale Concrete Encased Composite Beams
2.1 Test Specimens
2.2 Test Setup
2.3 Test Results
2.4 Influences of Steel Flange Width Ratio and Bond Conditions
Chapter 3 Analytical Model for Predicting Shear Bond Failure of Concrete Encased Composite Members
3.1 Analytical Model for Predicting Shear Bond Failure of Concrete Encased Composite Beams
3.2 Analytical Model for Predicting Shear Bond Failure of Concrete Encased Composite Columns
3.3 Design Application
Chapter 4 Shear Strength of Concrete Encased Composite Structural Members
4.1 AIJ-SRC Code (2001)
4.2 ACI-318 Code (2002)
4.3 AISC-LRFD Specification (1999)
4.4 NEHRP Seismic Provisions (1997)
4.5 Proposed Design Approach to Determine the Shear Capacity of Composite Memebrs
4.6 Verification Analysis
4.7 Parametric Study
4.8 Critical Steel Flange Ratio
4.9 Comparisons of Results Predicted by Proposed Approach and Existing Codes
Chapter 5 A New Approach for Design of Concrete Encased Composite Columns
5.1 Review of Design Methods
5.2 The Proposed Method: Strength Superposition Approach
5.3 Verification Analysis
Chapter 6 Summary and Conclusions
6.1 Shear Strength and Behavior of Concrete Encased Composite Structural Members
6.2 Strength and Behavior of Concrete Encased Composite Structural Members Subjected to Compression and Bending
References
ACI (2002). Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02). American Concrete Institute, Farminton Hills, Michigan.
ACI-ASCE Committee 426 (1973). “The shear strength of reinforced concrete members.” Proceedings of ASCE, Journal of the Structural Division, 99 (ST6), 1148-1157.
AIJ (2001). Standards for structural calculation of steel reinforced concrete structures. Architectural Institute of Japan, Tokyo, Japan.
AISC (1999). Load and resistance factor design specification for structural steel buildings. American Institute of Steel Construction, Chicago, Illinois.
ASTM (1991a). Standard methods for compression testing of cylindrical concrete specimens, C39-72. American Society for Testing and Materials, Philadelphia, Pa.
ASTM (1991b). Standard methods for tension testing of metallic materials, E8-91. American Society for Testing and Materials, Philadelphia, Pa.
Bjohovde, R. and Tall, L. (1971). “Maximum column strength and multiple column curve concept,” Fritz Lab. Report No. 337.29, Lehigh University, 1971.
BSSC (1997). NEHRP recommended provisions for the development of seismic regulations for new buildings and other structures. National Earthquake Hazards Reduction Program, Building Seismic Safety Council, Washington, D.C.
El-Tawil, S., and Deierlein,G.G. (1999), “Strength and ductility of concrete encased composite columns”, Journal of Structural Engineering, ASCE, 125(9), 1009-1019.
El-Tawil, S., Sanz-Picòn, C. F., and Deierlein, G. G. (1995). “Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns,” Journal of Constructional Steel Research, Elsevier Science Limited, 34:103-123.
Furlong, R. W. (1983). “Column rules of ACI, SSLC and LRFD Compared,” Journal of Structural Engineering, ASCE, 109, 2375-2386.
Furlong, R.W. (1968). “Design of steel-encased concrete beam-columns,” Journal of Structural Engineering, ASCE, 94(1), 267-281.
Furlong, R.W. (1976), “AISC columns design logic makes sense for composite column, too”, Engineering Journal, AISC, First Quarter, 1-7.
Goel, S. C. (1997). “U.S.-Japan Cooperative Earthquake Research Program: Phase 5- Composite and Hybrid Structures,” Summary, Resolutions and Recommendations of the 4th Joint Technical Coordinating Meeting, Dept. of Civil Engineering, University of Michigan, Ann Arbor.
Hofbeck, J.A., Ibrahim, I.O., and Mattock, A.H. (1969). “Shear transfer in reinforced concrete.” ACI Journal, Proceedings, 66(2), 119-128.
Johnson, R.P., and May, I.M. (1978). “Tests on restrained composite columns.” The Structural Engineers, London, England, 56B(2), June, 21-28.
Kent, D., and Park, R. (1971), “Flexural members with confined concrete”, Journal of Structural Division, ASCE, 97, 1969-1990.
MacGregor, J. G. (1997). Reinforced concrete: mechanics and design, 3rd Ed. Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Mattock, A.H., and Hawkins, N.M. (1972). “Shear transfer in reinforced concrete ¾ recent research.” Journal of the Prestressed Concrete Institute, 17(2), 55-75.
Mirza, S.A. (1989). “Parametric study of composite column strength variability,” Journal of Constructional Steel Research, 14(2), 121-137.
Mirza, S.A., Hyttinen, V., and Hyttinen, E. (1996). “Physical tests and analyses of composite steel-concrete beam-columns.” Journal of Structural Engineering, ASCE, 122(11), 1317-1326.
Mu~noz, P.R., and Hsu, C.-T.T. (1997a). “Behavior of biaxial loaded concrete-encased composite columns.” Journal of Structural Engineering, ASCE, 123(9), 1163-1171.
Mu~noz, P.R., and Hsu, C.-T.T. (1997b). “Biaxial loaded concrete-encased composite columns: design equation.” Journal of Structural Engineering, ASCE, 123(12), 1576-1585.
Naka, T., Morita, K. and Tachibana, M. (1977), “Strength and hysteretic characteristics of steel-reinforced concrete columns (Part 2)”, Transaction of AIJ, No. 250, Oct., 47-58. (in Japanese)
Nilson, A. H., and Winter, G. (1991). Design of Concrete Structures, McGraw-Hill Inc., New York.
Nishiyama, I., Goel, S. C., and Yamanouchi, H. (1998). “U.S.-Japan Cooperative Earthquake Research Program: Phase 5- Composite and Hybrid Structures,” Summary, Resolutions and Recommendations of the 5th Joint Technical Coordinating Meeting, Dept. of Civil Engineering, University of Michigan, Ann Arbor.
Priestley, M. J. N., Seible, F., Xiao, Y., and Verma, R. (1994). “Steel jacket retrofitting of reinforced concrete bridge columns for enhancing shear strength — Part 1: Theoretical considerations and test design.” ACI Structural Journal, ACI, 91(4), 394-405.
Priestley, M. J. N., Seible, F., Xiao, Y., and Verma, R. (1994). “Steel jacket retrofitting of reinforced concrete bridge columns for enhancing shear strength — Part 2: Test results and comparison with theory.” ACI Materials Journal, ACI, 91(5), 537-551.
Procter, A.N. (1967). “Tests on stability of concrete encased I-beams.” The Consulting Engineer, London, England, Feb., 56-58; Mar., 59-61.
Ricles, J. M., and Paboojian, S. D. (1994), “Seismic performance of steel-encased composite columns”, Journal of Structural Engineering, ASCE, 120(8), pp. 2474-2494.
Roeder, C.W., Chmielowski, R. and Brown, C.B. (1999). “Shear connector requirements for embedded steel sections.” Journal of Structural Engineering, ASCE, 125(2), 142-151.
SSRC (1988). Guide to stability design criteria for metal structures, 4th Edition. Structural Stability Research Council (SSRC), John Wiley & Sons, New York.
SSRC Task Group 20. (1979). “A specification for the design of steel—concrete composite columns,” Engineering Journal, AISC, 4, 101-115.
Vecchio, F., and Collins, M. (1986), “The modified compression field theory for reinforced concrete subjected to shear”, ACI Journal, ACI, 83(2), March-April, 219-231.
Viest, I. M., Colaco, J. P., Furlong, R. W., Griffis, L. G. and Leon, R. T. and Wyllie, L. A. (1997). Composite Construction Design for Buildings. McGraw-Hill & ASCE, New York.
Wakabayashi, M. (1987). “A historical study of research on composite construction in Japan.” Proceedings of the Conference on Composite Construction in Steel and Concrete, ASCE, New York, 400-427.
Wakabayashi, M., Minami, K., and Komura, K. (1971), “An experimental study on elasto-plastic characteristics of concrete members using an encased H-section subjected to combined bending and axial force”, Bulletin of Disaster Prevention Research Institute, Kyoto University, No. 14A, pp. 417-437. (in Japanese)
Wallace, J. W. (1989). BIAX Users Manual: A computer program for analysis of reinforced concrete sections, Department of Civil Engineering, University of California at Berkeley, California.
Zhang, F. and Yamada, M. (1992). “Composite columns subjected to bending and shear,” Proceedings, Composite Construction in Steel and Concrete II, ASCE, New York, 483-498.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔