# 臺灣博碩士論文加值系統

(54.161.24.9) 您好！臺灣時間：2022/01/17 11:47

:::

### 詳目顯示

:

• 被引用:4
• 點閱:835
• 評分:
• 下載:95
• 書目收藏:2
 由於計算機運算速度之提昇與數值方法之進步，使得三維計算流體力學（CFD）模式已能廣泛應用於可壓縮及不可壓縮流場、層流與亂流、暫態與穩態流、多相流、自由液面流等問題，對於工業設計與分析上有很大的助益。另一方面，由於計算流體力學與傳統明渠水流計算之基本假設不同，如明渠水力計算的底床糙度多採用曼寧係數，然計算流體力學模式則採用壁函數（wall function）近似之。因此，本文係以三維計算流體力學的觀點出發，進行明渠水流之模擬。本文採用商業版流體力學模式STAR-CD進行平床渠流流場及水躍流場之數值模擬，並針對模式所採用之壁函數及流體體積函數法（VOF）等參數進行討論，以了解模擬結果對自由液面變動之影響。 根據平床渠流之模擬結果，本模式目前所能應用之曼寧值範圍為0.0111至0.0135間；而由水躍流場之模擬結果顯示，在福祿數6.65及2.9之流場須分別取體積濃度值0.7與0.5以決定自由液面位置，方可顯示較佳之水躍曲線；此外，本模式對於不連續之自由液面流具有良好之模擬結果。
 Owing to the high performance computation and improvement of the numerical method, the three-dimensional computational fluid dynamics models have been applied for compressible and incompressible flows, laminar and turbulent flows, transient and steady-state flows, multi-phase flows and free surface flows,etc. are useful for industrial analysis and design. On the other hand, due to the difference of the basic assumptions in the computational fluid dynamics and the computational hydraulics, i.e., Manning’s roughness formula used in the computational hydraulics, but wall function concept in the computational fluid dynamics. Therefore, this study is based on the concept of three-dimensional computational fluid dynamics to simulate open channel flows. The commercial STAR-CD code is adopted to simulate the horizontal channel flows and hydraulic jump flows. Parameters of the wall function and volume of fluid method (VOF) in the code are examined to find their influences on the variance of free surface. According to the simulation results of horizontal channel flows, this code can be applied to cases with Manning’s value between 0.0111 and 0.0135. For the cases of hydraulic jump flow, the best jump profile is obtained with volume of fluid value 0.7 for Froude number 6.65, but volume of fluid value 0.5 for Froude number 2.9. In the same time, this code has the capability of simulating discontinuous free surface flows.
 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究步驟與方法 2 1.3 文獻回顧 3 第二章 STAR-CD控制方程式 6 2.1 基本控制方程式 6 2.2 紊流控制方程式 7 2.2.1 基本線性模式 7 2.2.2 基本非線性模式 8 2.2.3 標準型 模式 10 2.2.4 RNG 模式 12 2.2.5 Chen’s 模式 14 2.2.6 壁函數(wall function) 15 2.3 自由液面控制方程式 17 2.4 數值方法 19 第三章 STAR-CD操作程序 20 3.1 STAR-CD 簡介 20 3.2 前處理部分 21 3.2.1 網格建立 21 3.2.2 網格區塊組合 22 3.2.3 局部網格加密 23 3.2.4 邊界指定 23 3.2.5 邊界條件設定 24 3.2.6 初始條件設定 27 3.3 求解部分 28 3.3.1 分析形式設定 28 3.3.2 流體特性設定 29 3.3.3 運算方程式設定 29 3.3.4 分析控制 30 3.3.5 模式檢查 31 3.3.6 運算時間控制 31 3.3.7 啟動模擬功能 32 3.4 後處理部分 32 3.4.1 讀取結果資料 32 3.4.2 繪圖及動畫展示 33 第四章 明渠流之數值模擬 36 4.1 平床渠流模擬 36 4.2 水躍模擬 40 第五章 結論與建議 45 5.1 結論 45 5.2 建議
 1. 曲新生，2000，「電廠內通風系統之研究（I）」，台灣電力公司研究報告。2. 許銘熙、鄧慰先、陳春宏、徐必杰，1994，「渠道中超臨界流震波之數值模擬(二)」，行政院國家科學委員會專題研究計畫，國立台灣大學水工試驗所研究報告，第179號，820115E002 411。3. 國立交通大學高效率能源技術研究中心，2000，「高效率能源技術研究發展計畫」，經濟部能源委員會研究報告。4. 連和政、林芳邦、李隆正、張宏生、劉昭忠、沈澄宇、蔡惠峰，2000，「河川三維水流模式與虛擬實境之應用研究」，第十一屆水利工程研討會論文集，台北，B-7至B-12頁。5. 鄧慰先、許銘熙，1999，「明渠夾氣水躍之數值模擬」，第十屆水利工程研討會論文集，台中，D-1至D-8頁。6. Chen, Y. S., and Kim, S. W. (1987). “Computation of turbulent flows using an extended turbulence closure model.” NASA CR-179204.7. El Tahry, S. H. (1983). “ equation for compressible reciprocating engine flows.” AIAA J. Energy, 7(4), 345-353.8. Gharangik, A. M., and Chaudhry, M. H. (1991). “Numerical simulation of hydraulic jump.” Journal of Hydraulic Engineering, ASCE, 117(9), 1195-1211.9. Hager, W. H., and Bremen, R. (1989). “Classical hydraulic jump：sequent depths.” J. Hydr. Res., 27(5), 565-585.10. Hager, W. H., et al., (1990). “Classical Hydraulic Jump.” Journal of Hydraulic Research, 591-608.11. Harlow, F. H., and Welch, J. E. (1965). “Numerical calculation of time-dependent viscous incompressible flows of fluid with free surface.” Phys. Fluids, 8, 2182-2187.12. Hirt, C. W., and Nichols, B. D. (1981). “Volume of fluid(VOF) method for the dynamics of free boundaries.” J. Compt. Phys., 39, 201-225.13. Issa, R. I. (1986). “Solution of the implicity discretised fluid flow equation by operator-splitting.” J. Comp. Phys., 62, 40-65.14. Issa, R. I., Gosman, A. D., and Watkins, A. P. (1986). “The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme.” J. Comp. Phys., 62, 66-82.15. Issa, R. I., Ahmadi Befrui, B., Beshay, K., and Gosman, A.D. (1991). “Solution of the implicity discretised reacting flow equation by operator-splitting.” J. Comp. Phys., 93, 388-410.16. Jang, J. Y., Shien, K. P., and Ay, H. (2001). “3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers.” 2001 American Society of Heating, Refrigeration and Air-conditioning Engineers Annual Meeting, Cincinnati, OH, U.S. A., June 22-27.17. Kalis, J. (1961). “Diminution de la turbulence derriere le ressant.” IX IAHR Congress Dubrovnik, 43-49.18. Lai, Y. G., and Patel, V. C. (1999). “CFD simulation and assessment of draft tube flow.” Turbine99-ERCOFTAC Workshop on Draft Tube Flow, Porjus Hydropower Center, Sweden, 20-23.19. Lauder, B. E., and Spalding, D. B. (1974). “The numerical computation of turbulent flow.” Comp. Meth. in Appl. Mech. & Eng., 3, 269.20. Long, D., Steffler, P. M., and Rajaratnam, N. (1990). “LDA study of flow structure in submerged hydraulic jump.” J. Hydr. Res., 28(4), 437-460.21. Long, D., Rajaratnam, N., Steffler, P. M., and Smy, P. R. (1991a). “Structure of flow in hydraulic jumps.” J. Hydr. Res., 29(2), 207-218.22. Molls, T., Hanif Chaudhry, M. (1995). “ Depth-averaged open-channel flow model.” Journal of Hydraulic Engineering, 121(6), 453-465.23. Patankar, S. V., and Spalding, D. B. (1972). “A calculation procedure for heat,mass and momentum in three-dimensional parabolic flows.” Int. J. Heat Mass Transfer, 15.24. Quraishi, A. A., and Al-brahim, A. M. (1992). “Hydraulic jump in sloping channel with positive or negative step.” J. Hydr. Res., 30(6), 769-782.25. Rahman, M., and Chaudry, M. H. (1995). “Simulation of hydraulic jump with grid adaptation.” Journal of hydraulic research, 33(4), 555-567.26. Rajaratnam, N. (1961). “An Experimental Study of Air Entrainment Characteristics of Hydraulic Jump.” Journal of Institution of Engineers(India), 42, 247-273.27. Rajaratnam, N. (1965). “ Hydraulic jump.” Advances in Hydroscience, V. T. Chow, Ed.4, 198-280.28. Resch, F. J., and Leutheusser, H. J. (1972). “Renolds stress measurements in hydraulic jump.” J. Hydr. Res., 10(4), 409-429.29. Richtmeyer, R. D., and Morton, K. W. (1967). “Difference methods for initial-value problems.” 2nd Edition, Wiley-Interscience, New York.30. Rodi, W. (1979). “Influence of buoyancy and rotation on equations for turbulent length scale.” Proc. 2nd Symp. on Turbulent Shear Flows.31. Rouse, H., Siao, T., and Nagaratnam, S. (1958). “Turbulent characterictics of the hydraulic jump.” J. Hydr. Div., ASCE, 84：HY1, paper 1528, 1-30.32. Schlichting, H. (1968). “Boundary layer theory.” 6th Edition, McGraw-Hill, New York.33. Warsi, Z. V. A. (1981). “Conservation form of the Navier-Stokes equations in general nonsteady coordinates.” AIAA J., 19, 240-242.34. Wu, W., Rodi, W., and Wenka, T. (2000). “3D numerical models of flow and sediment transport in open channels.” Journal of Hydraulic Engineering, 126(1), 4-15.35. Yakhot, V., and Orszag, S. A. (1986). “Renormalization group analysis of turbulence─I：Basic theory.” J. Scientific Computing, 1, 1-51.36. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G. (1992). “Development of turbulence models for shear flows by a double expansion technique.” Phys. Fluids, A4, 7, 1510-1520
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 以奈維爾-史托克方程式與等位函數法求解自由液面流場之研究 2 省水馬桶沖水之流速測試及分析研究 3 以三維模擬檢核魚道設計之流場適合度─以馬鞍壩為例

 1 [1]林祝興、李正隆、 簡睿成，”應用視覺式祕密分享的安全線上交談軟體之製作”， 東海科學，第二卷，民國八十九年七月，東海大學，頁43-53

 1 一維有限解析法模式於明渠合分流之研究 2 軟弱岩石之應力應變行為 3 包覆型鋼骨鋼筋混凝土構材之強度與力學行為 4 自充填高性能鋼筋混凝土梁剪力強度之測試與探討 5 FPS隔震儲存槽之試驗與分析 6 物料供應鏈電腦自動化模型之研究 7 明渠二維水理模式之應用評估研究 8 柔性儲存槽之動力分析 9 類神經網路系統識別模式於結構健康檢測之研究 10 人造膠結不良砂岩之模型承載試驗設備建立與淺基礎承載試驗 11 膠結不良軟岩之彈塑性模式與基礎承載模擬應用 12 中華衛星二號取像區域之參考網格系統及地理資訊系統建立 13 嚴密正高改正 14 牆的意涵即其與空間中的互動 15 二維有限解析法明渠水理與輸砂模式之研發與應用

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室