跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉佳沅
研究生(外文):Chia-Yuan Yeh
論文名稱:柔性儲存槽之動力分析
論文名稱(外文):Dynamic Analysis of Flexible Tank
指導教授:王彥博
指導教授(外文):Yen-Po Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:柔性儲存槽動水壓衝擊液壓液面激盪
外文關鍵詞:flexible tankdynamic pressureimpulsive pressuresloshing displacement
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:6
本文根據簡化之儲存槽模型,建立柔性儲存槽之運動方程式,進而分析柔性儲存槽之基本動力特性。數值模擬分析藉由不同之地震震波與強度,比較柔性與剛性儲存槽動力特性之差異,並進行一系列的參數研究。分析結果顯示,細長形柔性儲存槽由於槽壁的振動導致衝擊動態水壓增加,但隨著儲存水位降低其動態水壓之分佈則趨近剛性儲存槽之結果;矮胖形儲存槽動力行為近似剛性儲存槽,其動態水壓與剛性儲存槽之結果接近。此外,槽壁的振動與液面激盪位移之互制效應極微,故流體液面激盪位移可由剛性儲存槽估算之。
In this study, the equation of motion of flexible tanks under seismic load has been derived based on a simplified model, which allows for analyzing the dynamic characteristics of flexible tanks. A series of numerical simulations has been conducted to explore the difference of dynamic characteristics between flexible and rigid tanks via different earthquakes of various intensity levels. Simulation results indicate that the impulsive pressure for slender tanks increases due to the vibration of the tank shell, while the distribution of the dynamic pressure becomes closer to rigid tanks as the storage level lowered. The dynamic properties of broad tanks are similar to rigid tanks as reflected from the distribution of dynamic pressure. Moreover, the coupling effect of surface sloshing with the shell vibration is found negligible in the cases studied, which suggests the sloshing displacement may be estimated from the hydrodynamic analysis of rigid tanks.
目錄
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………...II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 8
第二章 柔性儲存槽之動力分析 16
2-1 柔性儲存槽之流體動力分析 17
2-2 柔性儲存槽之流體-槽殼運動方程式 35
2-3 狀態空間法 39
第三章 數值實例分析 41
3-1 數值分析結果 42
3-1.1 動水壓分析結果 42
3-1.2 槽壁變形對液面激盪的影響 43
3-2 地震強度與水壓變化之關係 45
第四章 結論 47
參考文獻 50
附錄A 56
附錄B 57
附錄C 58
附錄D 59
表目錄
表3.1 儲存槽振動頻率(HZ) 62
表3.2 鋁製儲存槽振動頻率(HZ) 63
圖目錄
圖2.1 儲存槽模型示意圖 66
圖3.1-1 EL CENTRO地震歷時紀錄(PGA=0.34G) 69
圖3.1-2 EL CENTRO地震頻譜 69
圖3.1-3 KOBE地震歷時紀錄(PGA=0.83G) 70
圖3.1-4 KOBE地震頻譜 70
圖3.1-5 HACHAINOH地震歷時紀錄(PGA=0.4) 71
圖3.1-6 HACHAINOH地震頻譜 71
圖3.2-1 動水壓沿高度變化(H=72FT, INPUT=EL CENTRO 0.5G) 72
圖3.2-2 動水壓沿高度變化(H=54FT, INPUT=EL CENTRO 0.5G) 73
圖3.2-3 動水壓沿高度變化(H=36FT, INPUT=EL CENTRO 0.5G) 74
圖3.2-4 動水壓沿高度變化(H=18FT, INPUT=EL CENTRO 0.5G) 75
圖3.2-5 動水壓沿高度變化(H=72FT, INPUT=EL CENTRO 0.34G) 76
圖3.2-6 動水壓沿高度變化(H=54FT, INPUT=EL CENTRO 0.34G) 77
圖3.2-7 動水壓沿高度變化(H=36FT, INPUT=EL CENTRO 0.34G) 78
圖3.2-8 動水壓沿高度變化(H=18FT, INPUT=EL CENTRO 0.34G) 79
圖3.2-9 動水壓沿高度變化(H=72FT, INPUT=KOBE 1G) 80
圖3.2-10動水壓沿高度變化(H=54FT, INPUT=KOBE 1G) 81
圖3.2-11動水壓沿高度變化(H=36FT, INPUT=KOBE 1G) 82
圖3.2-12動水壓沿高度變化(H=18FT, INPUT=KOBE 1G) 83
圖3.2-13動水壓沿高度變化(H=72FT, INPUT=KOBE 0.8G) 84
圖3.2-14動水壓沿高度變化(H=54FT, INPUT=KOBE 0.8G) 85
圖3.2-15動水壓沿高度變化(H=36FT, INPUT=KOBE 0.8G) 86
圖3.2-16動水壓沿高度變化(H=18FT, INPUT=KOBE 0.8G) 87
圖3.2-17動水壓沿高度變化(H=72FT, INPUT=KOBE 0.4G) 88
圖3.2-18動水壓沿高度變化(H=54FT, INPUT=KOBE 0.4G) 89
圖3.2-19動水壓沿高度變化(H=36FT, INPUT=KOBE 0.4G) 90
圖3.2-20動水壓沿高度變化(H=18FT, INPUT=KOBE 0.4G) 91
圖3.2-21動水壓沿高度變化(H=72FT, INPUT=HACHINOHE 1G) 92
圖3.2-22動水壓沿高度變化(H=54FT, INPUT=HACHINOHE 1G) 93
圖3.2-23動水壓沿高度變化(H=36FT, INPUT=HACHINOHE 1G) 94
圖3.2-24動水壓沿高度變化(H=18FT, INPUT=HACHINOHE 1G) 95
圖3.2-25動水壓沿高度變化(H=72FT, INPUT=HACHINOHE 0.8G) 96
圖3.2-26動水壓沿高度變化(H=54FT, INPUT=HACHINOHE 0.8G) 97
圖3.2-27動水壓沿高度變化(H=36FT, INPUT=HACHINOHE 0.8G) 98
圖3.2-28動水壓沿高度變化(H=18FT, INPUT=HACHINOHE 0.8G) 99
圖3.2-29動水壓沿高度變化(H=72FT, INPUT=HACHINOHE 0.4G) 100
圖3.2-30動水壓沿高度變化(H=54FT, INPUT=HACHINOHE 0.4G) 101
圖3.2-31動水壓沿高度變化(H=36FT, INPUT=HACHINOHE 0.4G) 102
圖3.2-32動水壓沿高度變化(H=18FT, INPUT=HACHINOHE 0.4G) 103
圖3.2-33動水壓沿高度變化(H=16FT, INPUT=EL CENTRO 0.5G) 104
圖3.2-34動水壓沿高度變化(H=12FT, INPUT=EL CENTRO 0.5G) 105
圖3.2-35動水壓沿高度變化(H=16FT, INPUT=KOBE 1G) 106
圖3.2-36動水壓沿高度變化(H=12FT, INPUT=KOBE 1G) 107
圖3.2-37動水壓沿高度變化(H=16FT, INPUT=KOBE 0.8G) 108
圖3.2-38動水壓沿高度變化(H=16FT, INPUT=KOBE 0.4G) 109
圖3.2-39動水壓沿高度變化(H=16FT, INPUT=HACHINOHE 1G) 110
圖3.2-40動水壓沿高度變化(H=12FT, INPUT=HACHINOHE 1G) 111
圖3.2-41動水壓沿高度變化(H=16FT, INPUT=HACHINOHE 0.8G) 112
圖3.2-42動水壓沿高度變化(H=12FT, INPUT=HACHINOHE 0.8G) 113
圖3.2-43動水壓沿高度變化(H=16FT, INPUT=HACHINOHE 0.4G) 114
圖3.2-44動水壓沿高度變化(H=12FT, INPUT=HACHINOHE 0.4G) 115
圖3.3-1 地震強度對動水壓之影響(EL CENTRO 0.34Gż.5G) 116
圖3.3-2 地震強度對動水壓之影響(KOBE 0.4G、0.8GŽG) 117
圖3.3-3 地震強度對動水壓之影響(HACHINOHE 0.4G、0.8GŽG) 118
圖3.4-1 液面處槽壁加速度歷時圖 (EL CENTRO 0.5G) 119
圖3.4-2 液面處槽壁加速度歷時圖 (EL CENTRO 0.34G) 120
圖3.4-3 液面處槽壁加速度歷時圖 (KOBE 1G) 121
圖3.4-4 液面處槽壁加速度歷時圖 (KOBE, PAG=0.8G) 122
圖3.4-5 液面處槽壁加速度歷時圖 (KOBE, PAG=0.4G) 123
圖3.4-6 液面處槽壁加速度歷時圖 (HACHINOHE 1G) 124
圖3.4-7 液面處槽壁加速度歷時圖 (HACHINOHE 0.8G) 125
圖3.4-8液面處槽壁加速度歷時圖 (HACHINOHE 0.4G) 126
圖3.4-9液面處槽壁加速度歷時圖 (KOBE ) 127
圖3.4-10 液面處槽壁加速度歷時圖 (HACHINOHE) 128
圖3.5-1 激盪位移歷時圖 (EL CENTRO 0.5G) 129
圖3.5-2 激盪位移歷時圖 (EL CENTRO 0.34G) 130
圖3.5-3 激盪位移歷時圖 (KOBE 1G) 131
圖3.5-4激盪位移歷時圖 (KOBE 0.8G) 132
圖3.5-5激盪位移歷時圖 (KOBE 0.4G) 133
圖3.5-6激盪位移歷時圖 (HACHINOHE 1G) 134
圖3.5-7激盪位移歷時圖 (HACHINOHE 0.8G) 135
圖3.5-8激盪位移歷時圖 (HACHINOHE 0.4G) 136
圖3.6-1 槽底動水歷時圖( EL CENTRO 0.5G ) 137
圖3.6-2 槽底動水歷時圖( EL CENTRO 0.34G ) 138
圖3.6-3 槽底動水歷時圖( KOBE 1G ) 139
圖3.6-4 槽底動水歷時圖( KOBE 0.8G ) 140
圖3.6-5 槽底動水歷時圖( KOBE 0.4G ) 141
圖3.6-6 槽底動水歷時圖( HACHINOHE 1G ) 142
圖3.6-7 槽底動水歷時圖( HACHINOHE 0.8G ) 143
圖3.6-8 槽底動水歷時圖( HACHINOHE 0.4G ) 144
圖3.6-9 槽底動水歷時圖( EL CENTRO 0.5G ) 145
圖3.6-10 槽底動水歷時圖( EL CENTRO 0.34G ) 145
圖3.6-11 槽底動水歷時圖( KOBE 1G ) 146
圖3.6-12 槽底動水歷時圖( KOBE 0.8G ) 146
圖3.6-13 槽底動水歷時圖( KOBE 0.4G ) 147
圖3.6-14 槽底動水歷時圖( HACHINOHE 1G ) 148
圖3.6-15 槽底動水歷時圖( HACHINOHE 0.8G ) 148
圖3.6-16 槽底動水歷時圖( HACHINOHE 0.4G ) 149
參考文獻
1.王宗鴻 (1997),“儲存油槽之耐震設計考量,” 國立台灣大學土木工程研究所碩士論文,1997年6月。(指導教授:田堯彰)
2.王宗鴻、田堯彰 (1998),“石油與天然氣系統的耐震安全評估,” 中華民國第四屆結構工程研討會論文集2/3,1998年9月,pp. 915-922。
3.Jia, ZH. and Ketter, RL. Experimental study of “elephant foot budge” instability of thin-walled metal tanks. Technical Report NCEER-89-004, SUNY/Buffalo, New York, 1989.
4.Liu, WK. and Uras, RA. Transient failure analysis of liquid-filled shells, part I: theory. Nuclear Engineering and Design, 1989; 117:107-139.
5.Liu, WK. and Uras, RA. Transient failure analysis of liquid-filled shells, part II: applications. Nuclear Engineering and Design, 1989; 117: 41-157.
6.Uras, RA. and Liu, WK. Dynamic stability characteristics of liquid-filled shells. Earthquake Engng Struct. Dyn. 1989; 18: 1219-1231.
7.Chiba, M., Tani, J., Hashimoto, H. and Sudo S. Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: experiment. Journal of Sound and Vibration. 1986; 104:301-319.
8.Uras, RA. and Liu, WK. Dynamic buckling of liquid-filled shell under horizontal excitation. J. Sound Vibration, 1990; 141(3): 389-408.
9.Liu, WK., Chen, YJ., Tsukimori, K. and Uras, RA. Recent advances in dynamic buckling analysis of liquid-filler shells. J. Pressure Vessel Technology. ASME. 1991; 113, May: 314-320.
10.Housner, GW. Dynamic pressure on accelerated fluid containers. Bulletin Seism. Soc. America. 1957;47(1):15-35.
11.Veletsos, AS. Seismic response and design of liquid storage tanks. Guidelines for the seismic design of oil and gas pipeline systems. Technical Council on Lifeline Earthquake Engineering, ASCE, New York, N.Y. 1984:255-370 and 443-461.
12.Tang, Yu. Dynamic response of tank containing two liquids. Journal of Engineering Mechanics, ASCE, 1993; 119, no. 3, March, pp. 531-548
13.Veletsos, AS. and Shivakumar, P. Sloshing response of layered liquids in rigid tanks. Earthquake Engineering & Structural Dynamics, 1993; 22, no. 9, Sep., pp. 801-821.
14.Veletsos, AS. and Shivakumar, P. Hydrodynamic effect in rigid tanks containing layered liquids. Earthquake Engng Struct. Dyn. 1995; 24, 835-860.
15.Shivakumar, P. and Veletsos, AS. Dynamic response of rigid tanks with inhomogeneous liquids. Earthquake Engng Struct. Dyn. 1995; 24, 991-1015.
16.Katsuhisa Fujita. A Seismic Response Aanlysis of a Cylindrical Liquid Storage Tank Including Tank the Effect of Sloshing. Bulletin of the JSME. 1981; 24 no. 25, Sep., pp. 1634-1641.
17.Haroun, MA. Dynamic analyses of liquid storage tanks. California Institute of Technology. 1980.
18.Haroun, MA. and Housner, GW. Seismic design of liquid storage tanks. J. Technical Councils, ASCE. 1981; 107, TC1, April: 191-207.
19.Haroun, MA. and Housner, GW. Dynamic characteristics of liquid storage tanks. J. Engng Mech. Division, ASCE. 1982; 108, EM5, October: 783-818.
20.Clough, DP. and Clough, RW. Earthquakes simulator studies of cylindrical tanks. Nuclear Engineering and Design, 1978; 46:367-380.
21.Younan, AH. and Veletsos, AS. Dynamics of solid-containing tanks I: rigid tanks. J. Struct. Engng. , ASCE. 1998; 124(1), January: 52-61.
22.Veletsos, AS. and Younan, AH. Dynamics of solid-containing tanks II: flexible tanks. J. Struct. Engng. , ASCE. 1998; 124(1), January: 62-70.
23.Malhotra, PK. and Veletsos, AS. Beam model for base-uplifting analysis of cylindrical tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3471-3488.
24.Malhotra, PK. and Veletsos, AS. Uplifting analysis of base plates in cylindrical tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3489-3505.
25.Malhotra, PK. and Veletsos, AS. Uplifting response of unanchored liquid-storage tanks. J. Struct. Engng. , ASCE. 1994; 120(12), December: 3525-3547.
26.Malhotra, PK. Seismic response of soil-supported unanchored liquid-storage tanks. J. Struct. Engng. , ASCE. 1997; 123(4), April: 440-450.
27.Malhotra, PK. and Veletsos, AS. Energy method for base uplifting analysis of liquid-storage tanks. J. Pressure Vessel Technology. , ASME. 1996; 118, August: 332-335.
28.Chalhoub, MS. And Kelly, JM. Shake table test of cylindrical water tanks in base-isolated structure. J. Engrg. Mech. , ASCE. 1990; 116(7): 1451-1472.
29.Bo, L. and Tang, JX. Vibration studies of base-isolated liquid storage tanks. Comp. And Struct. ,1994; 52(5):1051-1059.
30.Malhotra, PK. Method for seismic base isolation of liquid-storage tanks. J. Struct. Engng. , ASCE. 1997; 123(1), January: 113-116.
31.Malhotra, PK. New method for seismic isolation of liquid-storage tanks. Earthquake Engng Struct. Dyn. 1997; 26: 839-847.
32.Malhotra, PK. Seismic strengthening of liquid-storage tanks with energy-dissipating anchors. J. Struct. Engng. , ASCE. 1998; 124(4), April: 405-414.
33.Shenton, HW. and Hampton, FP. Seismic response of isolated elevated water tanks. J. Struct. Engng. , ASCE. 1999; 125(9), September: 965-976.
34.Park, JH. , Koh, HM. and Kim, JK. Seismic isolation of pool-type tanks for the storage of nuclear spent fuel assemblies. Nuclear Engineering and Design. 2000; 199:143-154.
35.Zayas, VA. and Low, SS. Application of seismic isolation to industrial tanks, PVP- Seismic, Shock, and Vibration Isolation, ASME 1995; 319:273-288.
36.Wang, YP. , Teng, MC. and Chung KW. Seismic isolation of rigid cylindrical tanks using friction pendulum bearings. Earthquake Engng Struct. Dyn. 2001; 30(7): 1083-1099.
37.Wang, Yen-Po, Min-Cheng Teng and Kuo-Whie Chung. Experimental Study of Seismic Isolation of Rigid Cylindrical Tanks Using Friction Pendulum Bearings. Proceedings of the Workshop on Diagnosis, Analysis and Control of Vibration and Noise, Shanghai, October,2001; 26-28.
38.Choi, CK., Lee, TY. and Lee EJ. Analysis of in-ground LNG storage tank using variable-node elements. The Eighth East Asia-Pacific Conference on Structural Engineering and Construction, Singapore, December. 2001;Inv1:1-10.
39.Wang YP. and Jwo GR. Seismic isolation of rigid tanks using friction pendulum bearings. Proceeding of the International Workshop on Seismic Isolation, Energy Dissipation and Control of Structures, Guangzhou, China, May 6~8,1999.
40.Craig, R.R. Structural dynamics- an introduction to computer methods. John Wiely & Sons, Inc., 1981.
41.Wang, YP, Chung, LL, and Liao, WH. Seismic response analysis of bridges isolated with friction pendulum bearing. Earthquake Engng Struct. Dyn. 1998; 27: 1069-1093.
42.Wang, YP and Liao, WH. Dynamic analysis of sliding structures with unsynchronized support motions. Earthquake Engng Struct. Dyn. 2000; 29: 297-313.
43.Constantinou, M. C., Tsopelas, P., Kim, Y. S., and Okamoto, S. (1993), “NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges : Experimental and Analytical Study of a Friction Pendulum System (FPS),” Technical Report NCEER-93-0020, NCEER, SUNY/Buffalo.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top