跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:麥永慶
研究生(外文):Yeonc-Ching May
論文名稱:以二維時間域邊界元素法分析地表幾何變化對波傳之影響
論文名稱(外文):Effect of surface topography on the wave propagation by 2-D time domain BEM
指導教授:劉俊秀劉俊秀引用關係王忠成
指導教授(外文):Gin-Show LiouChung-Cheng Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:139
中文關鍵詞:邊界元素法圍繞元素地形
外文關鍵詞:BEMenclosing elementtopography
相關次數:
  • 被引用被引用:5
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要是利用二維時間域邊界元素法來分析基礎震動波傳遞的問題,而土壤在本文中假設為彈性半無限域(elastic half-space)來處理。在處理奇異性(singularity)的過程中,我們藉由圍繞元素(enclosing element)的方法加以解決。以圍繞元素處理半無限問題時,其圍繞之區域必須足夠大,以防止邊界反射之影響。本文中對圍繞元素距離及尺寸的選擇以案例加以探討。
最後,本文藉由以上所得之結論建立分析模型,改變不同之幾何變化參數及材料性質做一系列分析,以瞭解各項變因對彈性波傳的影響。
The paper is devoted to solve the problems of wave propagation due to vibration of foundations by 2-D time-domain BEM. Soil is treated as an elastic half-space in this study. In the process of solving the singularity, ‘enclosing element’ has been developed. Using enclosing element to deal with half-space problem, the domain enclosed by the elements must be large enough in order to avoid the contamination of the reflection from the boundary. The rules of selection of enclosing element’s size and distance from loading site have been discussed in this paper.
The analytic model is established according to the assumptions above. Furthermore, we will discuss the effect of varying topography and material property on wave propagation.
目錄
頁次
中文摘要……………………………………………………………………Ⅰ
英文摘要……………………………………………………………………Ⅱ
誌謝…………………………………………………………………………..Ⅲ
目錄…………………………………………………………………………..Ⅳ
表目錄……………………………………………………………Ⅶ
圖目錄…………………………………………………………………….….Ⅶ
第一章  緒論……………………………………………..1
1-1 前言…………………………………………………………………1
1-2 研究方法……………………………………………………………2
1-3 內容大綱……………………………………………………………3
第二章  文獻回顧…………….………………………….5
第三章  彈性波傳理論…………………………………..7
3-1 實體波………………………………………………………………7
3-2 表面波………………………………………………………………8
3-3 地表線荷重下的波傳特性…………………………………………9
3-4 實體波與雷利波折射與反射之現象………………………………9
3-4-1實體波的折射與反射….……………………………………….. 9
3-4-2雷利波的折射與反射……………………………………………10
第四章  邊界元素法理論……………………………….11
4-1 動力基本解………………………………………………………...11
4-2 邊界積分方程式…………………………………………………...13
4-3 時間域積分(temporal integral)之處理…...………………………..16
4-3-1 時間形狀函數…………………………………………………….16
4-3-2 摺積處理………………………………………………………….17
4-3-3 時間域積分……………………………………………………….20
4-4-4 空間域積分(spatial integral)……………………………………...20
4-4-5 求解過程………………………………………………………….22
4-4-6 奇異性之處理…………………………………………………….23
4-4-7 阻尼效應之模擬………………………………………………….24
第五章  程式驗證及元素切割特性探討……………….27
5-1 程式驗證…………………………………………………………..27
5-2 元素分割特性探討………………………………………………..28
5-2-1 圍繞元素切割之探討……………………………………………28
5-2-2 反射效應之探討…………………………………………………30
第六章 分析結果與討論………………………………….31
6-1 分析模型建立……………………………………………………….31
6-2 原材料參數幾何變化的影響………………………………………32
6-2-1 下陷地形對震波傳遞的影響……………………………………32
6-2-2 上揚地形對震波傳遞的影響……………………………………33
6-2-3 凹槽地形對震波傳遞的影響……………………………………33
6-2-4 路堤地形對震波傳遞的影響……………………………………33
6-2-5 距離參數之影響…………………………………………………34
6-3 材料性質的影響…………………………………………………….35
6-3-1 阻尼比的影響……………………………………………………35
6-3-2 柏松比的影響……………………………………………………36
第七章 結論與建議……………………………………….37
7-1 結論………………………………………………………………….37
7-2 建議………………………………………………………………….38
參考文獻 …………………………………………………41
附表………………………………………………………………45
附圖………………………………………………………………48
1. Feng ,J. ,et al.,“A 2-D time-domain boundary element method with damping”,Int. J. Numer. Meth. Engng. , 51 ,p647-661 , 2001
2. Somigliana,C.,“Sulle equazioni dell’s elasticita” ,
Ann.Mat Serie II 17 ,p37-64,1889-1890
3. Jaswon , M.A.,“Integral equation methods in potential theory-I”Proc.Roy.Soc.Lond.,vol.A275,pp.23-32,1963
4. Symm,G.T.,“Integral equation methods in potential theory-II”,Proc.Roy.Soc Lond.,vol.A275,pp.33-46,1963
5. Rizzo,F.J.,“An integral equation approach to boundary value problems of classical elastostatics”Q.Appl.Math.,vol.25,pp.83-95,1967
6. Cruse,T.A.“A direct formulation and numerical solution of the general transient elastodynamic problems-II”, J.Math.Analysis and Applications ,vol.22, pp.341-355,1968
7. Banerjee ,P.K. , Butterfield,R.“Boundary element methods in geomechanics”, Infinite element in geomechanics ,
G.Gudehus(ED.), p.529-570, J.Wiley.London,1977
8. Brebbia,C.A. ,Dominguez,J. ,“Boundary element methods for potential problems”,Appl.Math.Modelling ,vol.1, p372-378, 1977
9. Cole,D.M. , Kosloff,D.D. , Minster,J.B..,“A numerical boundary integral equation method for elastodymanics ”, Bulletin of the Seismological Society of America,Vol68 , p1331-1357,1978
10. Niwa ,Y. ,et al.,“An application of the integral equation method to two-dimensional elastodynamics .”Theory of Applied Mechanics ,Vol 28, p.282-290 ,1980
11. Mansur,W.J. , Brebbia,C.A.“Transient elastodynamics using a time stepping technique”. Boundary Elements , Brebbia CA(ed.),Berlin,1983
12. Mansur,W.J. , Brebbia,C.A.“Transient elastodynamics”,
Topics in Boundary Element Research ,Vol.2, p124-155 , Berlin ,1984
13. Emad , K. , G . D . Manolis ,“Shallow Trench and Propagation of surface Waves”,J.Engrg.Mech.,ASCE,Vol.111,NO.2,
pp279-282,1985
14. Beskos,D.E., Dasgupta,B. ,Vardoulakis,I.G.,“Vibration Isolation Using Open or Filled Trenches . Part 1:2-D Homogeneous”,Comput.Mech. ,Vol.1 , No.1, pp43-63, 1986.
15. Ahmad,S. ,Al-Hussaini,T.M.“Simplified Design for Open and Infilled trenches,“ASCE,J.Geotech.Engrg.,Vol.117,
No.1,January,pp.67-88,1991
16.蔡佩勳,“溝槽對方形震動基礎的震波阻隔效應之研究 ”,國立成功大學, 博士論文,民國85年.
17.Graff,K.F., Wave Motion in Elastic Solids, Dover Publications,Int.,New York,1973
18.Gutowski,T.G., Dym,C.L.,“Propagation of Ground Vibration : A Review”,J.Sound Vibr.,Vol 49(2),p179-193,1976
19.Richart.Jr.F.E.,et al. Vibrations of soils and foundations,1970
20.Viktorov,I.A.,“The effects of surface Defects on the Propagation of Rayleigh Waves”, Soviet Physics,
Doklady,3,pp.304-306,1958.
21.Banetjee,P.K. and Buttetfield,R.“Boundary Element Method in Engineering Science,”McGraw-Hill,Londin and New York,1981.
22.王忠成,“推導高階時間域邊界元素法求解二維暫態應力波”,國立交通大學,博士論文,1996
23.Ahmad,S. and Banerjee,P.K. “Multi-domain BEM for two-dimensional problems of elastodynamics”, International Journal for Numerical Methods in Engineering ,Vol26, p891-911,1988
24.Banerjee,P.K. Boundary element methods in engineering , McGraw-Hill ,London and New Work, 1994
25.Israil,A.S.M, and Banerjee,P.K. “Two-dimoensional transient wave propagation problems by time-domain BEM”, Int.J.Solids Structures, Vol.26, No.8, p.851-864, 1990
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top