# 臺灣博碩士論文加值系統

(107.21.85.250) 您好！臺灣時間：2022/01/22 03:58

:::

### 詳目顯示

:

• 被引用:5
• 點閱:183
• 評分:
• 下載:27
• 書目收藏:1
 本文延續Hsu & Yeh (1996)之一維有限解析法模式應用於單一矩形明渠流之模擬，將之擴充至含主支流渠道之合分流模擬。本模式採交錯格點，並符合可蘭穩定條件下求解。在合、分流交匯區之內部邊界條件係以水位相等來處理；在上下游邊界處，則根據流況需要，給予流量或水位。為驗證本模式之精度，本文利用淡江大學之模型試驗資料來加以比較。針對主支流合流角度為30、45、60及90度，分流角度為75及90度之試驗進行數模，經由合流前上游之主、支渠水深比較與分流後之主渠下游流量比較結果顯示，除90度合流在高流量比情況下，於支渠上游水深有稍高之誤差外，其餘案例均有頗令人滿意之模擬結果。此外，並模擬非定量流合、分流之假設案例，在角度30度下，所得之結果皆在一合理範圍內。
 This study is an extension of Hsu & Yeh’s (1996) 1-D explicit finite analytic model for single rectangular channel flow simulation. The extended model has the capability of simulating junction and division flows. The solutions on staggered grids are obtained by obeying the Courant condition. Equal stage is adopted as the internal boundary condition at the junction or division; the discharge or stage is specified at the upstream or downstream boundary according to the given flow characteristics. To test the accuracy of the model, we compare the simulated results with Tamkang University’s experimental data. The numerical simulations include the cases with junction angles of 450 and 900, and division angles of 750 and 900, respectively. For junction flows, the upstream depths in the main channel and the branch channel are compared; for division flow, the downstream depths in the main channel are compared. The simulated results are satisfactory except the cases of junction flow with junction angle of 900 and high discharge ratios. Under this condition, the simulated depths in the upstream branch channel are lower than those obtained from experiments. In addition, the simulation results for unsteady junction and division flows with angles of 300 are satisfactory.
 中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 ...xi 第一章 緒論 1 1.1 前言 1 1.2 研究方法 2 1.3文獻回顧 2 1.4 論文架構 10 第二章 理論基礎 12 2.1基本假設 12 2.2控制方程式 13 2.3 顯式有限解析法簡介 13 第三章 數值方法 16 3.1模式建立架構 16 3.1.1控制方程式之離散化 16 3.1.2外部邊界條件 18 3.1.3內部邊界條件 19 3.1.4斷面處理方式 24 3.2穩定性分析 25 3.3交錯格網 27 3.4模式演算之流程 28 第四章 模式驗證 30 4.1主支流交匯之分析 30 4.1.1等寬匯流交匯角度為45度 30 4.1.2等寬匯流交匯角度為90度 32 4.1.3非等寬匯流交匯角度30度、60度 33 4.2 主、分流之分析 34 4.2.1 等寬分流角度為90度 34 4.2.2 等寬分流角度為75度 36 4.3 模擬成果評估 38 4.3.1 一維EFA模式與實驗之比較 38 4.3.2 合、分流模擬 37 第五章 案例模擬 40 5.1 合流模擬 40 5.2 分流模擬 42 第六章 結論與建議 45 6.1結論 45 6.2建議 47 參考文獻 48 附錄一 顯式有限解析法係數推導 90 附錄二 特性線之推導 94
 1.王如意、何興亞，「溪流系統中匯流與分流水理分析及模型試驗之研究─花蓮嘉儂溪個案研究（一）」，國立台灣大學水工實驗所，研究報告第69號報告，台北 (1984)。2.王燦汶、徐年盛、賴經都、林永祥，「感潮河段防洪措施檢討（二）」，國立台灣大學水工試驗所，研究報告第267號，台北 (1997)。3.伍勝園，「等寬明渠直角匯流段水理分析」，國立成功大學碩士論文（1985）。4.伍勝園、蔡長泰、顏沛華，「等寬明渠直角匯流段水理分析」，中國農業工程學第三十一卷第四期，40-55頁（1985）。5.吳豐帥、許中杰，「直交匯流二維流場之研究」，第六屆水利工程研討會論文集，新竹，136-148頁 (1992)。6.吳豐帥，「亞臨界交匯渠流之研究」，淡江大學環境工程研究所博士論文(1994)。6.徐碧治，「明渠直角匯流段水理分析」，國立成功大學碩士論文（1987）。7.陳桐議，「有限解析法模式於渠道變量流之模擬」，國立交通大學 土木工程研究所碩士論文，(1998)。8.清水康行、板倉忠興，「沖積河川二維性流況及河床變動計算」，北海道開發局土木試驗所，河川研究室，土木試驗所第85號報告，(1986)。9.許中杰、巫唐宏，「深度平均二維性正交側入流明渠流數值模式」，第五屆水利工程研討會，319-328頁(1990)。10.張正熙，「亞臨界交匯明渠流之研究」，私立淡江大學水資源及環境工程研究所碩士論文(1995)。11.許中杰，「亞臨界交匯明渠流之研究」，中華顧問公司，(2000)。12.楊景旭，「非等寬直交分流研究」，私立淡江大學水資源及環境工程研究所碩士論文(1997)。13.樊運成，「非等寬直交分流研究」，私立淡江大學水資源及環境工程研究所碩士論文(1998)。14.林逸政，「非等寬直交分流研究」，私立淡江大學水資源及環境工程研究所碩士論文(2000)。15.陳建文，「非等寬75度分流研究」，私立淡江大學水資源及環境工程研究所碩士論文(2001)。16.葉克家、蔡惠峰、沈澄宇、許至璁，「蜿蜒河道有限解析法動床模式之研發及應用(Ⅰ)」，行政院國家科學委員會專題研究計劃成果報告(1996)。17.蔡長泰、顏沛華、徐勝勇，「明渠直角匯流流場之實驗分析」，土木水利，第十六卷，第二期，3-26頁 (1990)。18. Abbott, M. B., 1979, “Computational Hydraulics.” Pitman Publishing Co., Boston, 156-158.19. Atkins, D., Maskell, S. J., and Patrick, M. A., 1980, “Numerical prediction of separated flows.” International Journal for Numerical Method in Engineering, Vol. 15, 129-144.20. Best, J. L. and Reid, I., 1984, “Separation zone at open channel junctions.” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 11, 1588-1594.21. Cunge, J. A., Holly F. M., and Verwey A., 1980, “Practical Aspects of Computational River Hydraulics.” Pitman Publishing Pty Ltd, Melbourne, 109-112.22. Chen, C. J. and Chen, H. C., 1984a, “Finite analytic numerical method for unsteady two dimentional Navier-Stokes equation.” J. Comput. Phys., 53(2), 209-226.23. Chen, H. C. and Chen, C. J., 1984b, “Development of finite analytic numerical method for unsteady three dimentional Navier-Stokes equations：Computation of Internal Flows.” ASME, Soc. Mech. Eng., FED(14), 159-165.24. Chen, C. J. and Choi, S. K., 1990, “The Finite Analytic Method and its Application-Laminar and Turbulent Flows Past two Dimentional and Axisymmetric Bodies.” IIHR Report No. 344-I, Univ. of Iowa, Iowa.25. Dai, W., 1994, “Number Solution of Unsteady Navier-Stokes Equation Using Explicit Finite Analytic Scheme.” Ph. D. Thesis, Department of Applied Mathematics, The University of Iowa, Iowa.26. Fennema, R. J. and Chaudhry, M. H., 1986, “Explicit numerical scheme for unsteady free surface flows with shocks.” Water Resour. Res., 22(13), 1923-1930.27. Gardel, A., 1957, “Les pertes de charge dans les e'coulements au travers debranchements en Te'.” Bulletin Technique de la Suisse Romande, Vol. 83, No. 9, 123-130, No. 10, 143-148.28. Garcia-Navarro, P. and Saviron, J. M., 1992, “MacCormack’s method for the numerical simulation of one dimensional discontinuous unsteady open channel flow.” Journal of Hydraulic Research, 30(1), 95-105.29. Grace, J. L., and Priest, M. S., 1958, “Division of flow in open channel junctions.” Bulletin No. 31, Engineering Experiment Station, Alabama Polytechnic Institute.30. Hager, W. H., Kasthuri, B. and Pundarikanthan, N. V., 1984, Discussion of “Separation zone at open channel junction.” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 11, 539-548.31. Hager, W. H., 1989, “Transition flow in channel junctions.” Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 2, 243-259.32. Hsu, C. T. and Yeh, K. C., 1996, “Application of iterative explicit scheme to 1-D varied flows.” Proc. Seconed Int. Conf. On Hydroinformatics, Zurich, 751-752.33. Hsu, C. C., Wu, F. S., and Lee, W. J., 1998, “Flow at 900 equal-width open channel junction.” Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 2, 186-191.34. Hager, W. H., 1990, “An approximate treatment of flow in branches and bends.” Proc., Institution of Mathematical Engineers, 198C(4), 63-69.35. Kumar, G. S., Karki, K. S., and Hager, W. H., 1997, “Subcritical junction flow.” Journal of Hydraulic Engineering, ASCE, 123, No. 5, 447-445.36. Lin, J. D. and Soong, H. K., 1979, “Junction losses in open channel flows.” Water Resources Research, American Geophysical Union, 15, No. 2, 414-418.37. Law, S. W., 1965, “Dividing flow in open channel.” Thesis presented to McGill University, at Montreal, Quebec, Canada, in partial fulfillment of the requirements for the degree of Master of Engineering.38. Lakshmana Rao, N. S., and Sridharan, L., 1966, “Disscusion of Dividing flow in an open channel,” J. Hydr. Div., ASCE, 94(HY6), 237-239.39. McGuirk, J. J. and Rodi, W., 1978, “A depth-averaged mathematical model for the near field of side discharge into open channel flow.” J. of Fluid Mechanics, Vol. 86, part 4, 761-781.40. Modi, P. N., Ariel, P. D., and Dandekar, M. M., 1981, “Conformal mapping for channel junction flow.” Journal of Hydraulic Engineering, ASCE, Vol. 107, No. 12, 1713-1733.41. Pavlovic, R. N., Kapor, R., and Djuric, M., 1984, “Application of the body fitted coordinates for calculation of elliptic flows.” In Hydrosoft (Ed. by Brebbia C. A., Maksimovic C., and Radojkovic M.), 3.15-28, Proceedings of the 1st Int. Conf. On Hydraulic Engineering Software, Portoroz, Yugoslavia.42. Ramamurthy, A. S. and Satish, M. G., 1988, “Division of flow in short open channel branches.” Journal of Hydraulic Engineering, ASCE, 114, No. 4, 428-438.43. Ramamurthy, A. S., Carballada, L. B., and Due, M. T., 1988, “Combing open channel flow at right angled junctions.” Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 12, 1449-1460.44. Ramamurthy, A. S., Tran, D. M., and Carballada, L. B., 1990, “Dividing flow in open channels.” Journal of Hydraulic Engineering, ASCE, 116, No. 3, 449-455.45. Shettar, A. S. and Murthy, K. K., 1996, “A numerical study of division flow in open channels.” Journal of Hydraulic Research, IAHR, 34, No. 5, 651-675.46. Sridharan, L., 1966, “Division of Flow in Open Channels.” Thesis presented to the Indian Institute of Science, at Bangalore, India, in partial fulfillment of the requirements for the degree of Master of Science.47. Taylor, E. H., 1944, ”Flow characteristics at rectangular open channel junction.” Trans., ASCE, 109, 893-912.48. Wang, R. F. and Robles, A., 1971, “Flood control facilities for unique flood problems.” Journal of The Waterways, Harbors and Coastal Engineering Division, ASCE, Vol. 97, No. WW1, 191-195.49. Webber, N. B. and Greated, C. A., 1965, “An investigation of flow behaviour at the junction of rectangular channel.” Proceeding Institution of Civil Engineering, Paper No. 6901, 321-334.50. Wilson, D. E. and Philips, P., 1989, “A Phenomenological Model for the Near Wall Structure due to a turbulent Reattaching Flow behind a Backward Facing Step.” Proc. 4th International Conference on Computational Hydraulics Capri, Italy, p. 172-180.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 非等寬直交分流研究 2 亞臨界交匯渠流之研究 3 非等寬直交分流研究 4 非等寬直交分流研究 5 有限解析法模式於渠道變量流之模擬 6 亞臨界交匯明渠流之研究 7 明渠直角匯流段之水理分析 8 等寬明渠直角匯流段水理分析 9 非等寬75度分流研究 10 顯式有限解析法模式於動床主支流之研究 11 顯式有限解析法模式應用於河川水系之研究 12 多方式特性法模式於明渠合分流之研究 13 水深平均二維隱式水理模式乾床處理之研究 14 多方式特性法模式應用於動床主支流之研究 15 長隧道多管連通通風系統接頭流場分析

 1 17.蔡長泰、顏沛華、徐勝勇，「明渠直角匯流流場之實驗分析」，土木水利，第十六卷，第二期，3-26頁 (1990)。

 1 泛用性三維計算流體力學模式應用於明渠流之研究 2 普萊氏流速儀量測不確定度評估 3 應用遺傳演算法與試驗設計原則於地下水觀測井網設計 4 自充填混凝土結構行為監測與研究 5 柔性儲存槽之動力分析 6 軟弱岩石之應力應變行為 7 自充填高性能鋼筋混凝土梁剪力強度之測試與探討 8 物料供應鏈電腦自動化模型之研究 9 明渠二維水理模式之應用評估研究 10 二維顯式有限解析法模式於交匯明渠流之研究 11 高強度鋼管混凝土柱梁柱行為探討 12 風砂躍移試驗與模擬研究 13 坡地破壞潛能分析模式之建立與探討 14 輸砂公式對多方式特性法數值模擬之影響 15 肋板補強鋼骨箱型柱梁柱接頭之耐震行為

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室