跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱彬晟
研究生(外文):Bin-Sheng Chiu
論文名稱:坡地破壞潛能分析模式之建立與探討
論文名稱(外文):Examination and Development of Hillslope Failure Potential Model
指導教授:楊錦釧楊錦釧引用關係蔡東霖蔡東霖引用關係
指導教授(外文):Jin-Chuang YangTung-Lin Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:坡地破壞潛能摩爾-庫倫破壞準則多孔彈性介質理論網格生成法
外文關鍵詞:hillslope failure potentialMohr-Coulomb failure criteriaporoelastic media theorygrid generation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
坡地破壞潛能分析模式之建立與探討
學生:邱彬晟 指導教授:楊錦釧
蔡東霖
國立交通大學土木工程研究所
摘要
本研究根據多孔彈性介質理論以及摩爾-庫倫(Mohr-Coulomb)破壞準則,並利用網格生成法及有限差分法建立坡地破壞潛能分析模式,來探討連續對稱無限延展天然坡地之破壞趨勢。研究中,首先藉由具有解析解之簡單案例驗證模式之正確性。模式驗證後,分別探討有無載重及積水滲流作用下,波松比、孔隙率及坡地坡度等因素對破壞潛能之影響。結果顯示,波松比與坡地坡度對破壞潛能有明顯之影響,然而,孔隙率影響甚微,此外,有無載重與積水滲流作用,對破壞潛能之影響甚大,由此可研判載重及積水滲流為影響坡地破壞潛能不可忽略之重要因素。
關鍵詞:坡地破壞潛能、摩爾-庫倫破壞準則、多孔彈性介質理論、網格生成法
Abstract
Based on poroeslastic media theory and Mohr-Coulomb failure criteria, a finite difference hillslope failure potential model adopting grid generation has been developed to study the tendency for hillslope failure in infinitely extensive landscape with periodic topography. In this study, the proposed model is applied to a hypothetical case and verified by analytic solutions. The effects of Poisson’s ratio, porosity and hillslope on failure potential under the considerations of overburden and seepage flow have been examined. The results show that the failure potential is strongly related to the Poisson’s ratio and the hillslope. On the contrary, the porosity has rather low effect on the failure potential. In addition, from the analysis one can find that the overburden and the seepage flow greatly influence the failure potential.
Key Words:hillslope failure potential、Mohr-Coulomb failure criteria、poroelastic media theory、grid generation。
目錄
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法與步驟 3
1.4 章節介紹 4
第二章 理論基礎 6
2.1控制方程式 6
2.1.1水流控制方程式 6
2.1.2土體靜力平衡方程式 7
2.2邊界條件 11
2.2.1水流邊界條件 11
2.2.2土體邊界條件 12
2.3摩爾-庫倫破壞準則 13
2.4破壞潛能之定義 15
第三章 模式之建立 17
3.1 網格生成 17
3.2 控制方程式與邊界條件之轉換 18
3.3離散方程式與求解步驟 23
第四章 模式之驗證與分析 26
4.1水流計算之驗證 26
4.2土體靜力平衡計算之驗證 27
4.3坡地破壞潛能模式之分析 29
第五章 載重與積水滲流作用對坡地破壞潛能之影響 33
5.1載重對坡地破壞潛能之影響 33
5.2積水滲流作用對坡地破壞潛能之影響 35
第六章 結論與建議 37
6.1 結論 37
6.2 建議 38
參考文獻 40
附錄 離散方程式 87
表目錄
表2.1砂及粉土之排水摩擦角 49
表4.1地質參數表 50
圖目錄
圖1.1連續對稱無限延展之坡地地形示意圖 51
圖1.2研究模擬區域示意圖 52
圖1.3研究流程圖 53
圖2.1摩爾破壞包絡線及摩爾-庫倫破壞準則概念 54
圖2.2摩爾圓-破壞包絡線關係示意圖(無凝聚力土壤) 55
圖3.1座標轉換及網格生成示意圖 56
圖3.2研究模擬區域轉換示意圖 56
圖3.3模式計算流程圖 57
圖4.1水流計算驗證案例示意圖 58
圖4.2(a)-(c)水流計算模擬結果與解析解比較示意圖 59
圖4.3土體靜力平衡計算驗證案例示意圖 61
圖4.4(a)-(c)土體靜力平衡計算水平位移( )模擬結果與解析解比較示意圖 62
圖4.5(a)-(c)土體靜力平衡計算垂向位移( )模擬結果與解析解比較示意圖 63
圖4.6(a) 飽和土壤破壞潛能模擬結果 65
圖4.6(b) 飽和土壤滲流力場模擬結果 65
圖4.6(c) 飽和土壤體力力場模擬結果 66
圖4.7(a) 飽和土壤破壞潛能驗證案例示意圖
( Iverson and Reid(1992) ) 67
圖4.7(b) 飽和土壤滲流力場驗證案例示意圖
( Iverson and Reid(1992) ) 67
圖4.7(c) 飽和土壤體力力場驗證案例示意圖
( Iverson and Reid(1992) ) 68
圖4.8(a) 乾土破壞潛能模擬結果 69
圖4.8(b) 乾土主軸應力模擬結果 69
圖4.9(a) 乾土破壞潛能模擬結果
( Iverson and Reid(1992) ) 70
圖4.9(b) 乾土主軸應力模擬結果
( Iverson and Reid(1992) ) 70
圖4.10(a) 波松比( )對乾土破壞潛能大於0.7分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度) 71
圖4.10(b) 波松比( )對飽和土壤破壞潛能大於0.7分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度) 72
圖4.11(a) 孔隙率(n)對乾土破壞潛能大於0.6分布範圍影響示意圖
(波松比 =0.333、坡地坡度為26.6度) 73
圖4.11(b) 孔隙率(n)對飽和土壤破壞潛能大於0.6分布範圍影響示意圖
(波松比 =0.333、坡地坡度為26.6度) 74
圖4.12(a) 坡地坡度對乾土破壞潛能分布影響示意圖
(波松比 =0.333、孔隙率n=0.1) 75
圖4.12(b) 坡地坡度對飽和土壤破壞潛能分布影響示意圖
(波松比 =0.333、孔隙率n=0.1) 76
圖5.1 載重分布方式示意圖 77
圖5.2 不同載重分布狀況對乾土破壞潛能影響示意圖
(波松比 =0.333、孔隙率n=0.1、坡地坡度為26.6度) 78
圖5.3不同載重分布狀況對飽和土壤破壞潛能影響示意圖
(波松比 =0.333、孔隙率n=0.1、坡地坡度為26.6度) 79
圖5.4(a) 波松比( )對乾土破壞潛能大於0.5分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度、載重均勻分布) 80
圖5.4(b) 波松比( )對飽和土壤破壞潛能大於0.5分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度、載重均勻分布) 81
圖5.5(a) 孔隙率(n)對乾土破壞潛能大於0.5分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度、局部載重(集中於坡面中間段))
82
圖5.5(b) 孔隙率(n)對飽和土壤破壞潛能大於0.5分布範圍影響示意圖
(波松比 =0.333、坡地坡度為26.6度、局部載重(集中於坡面中間段))
83
圖5.6積水深度對破壞潛能大於0.6分布範圍影響示意圖
(波松比 =0.333、孔隙率n=0.1、坡地坡度為26.6度) 84
圖5.7波松比( )對飽和土壤破壞潛能大於0.5分布範圍影響示意圖
(孔隙率n=0.1、坡地坡度為26.6度、積水深度為0.5公尺) 85
圖5.8孔隙率(n)對飽和土壤破壞潛能大於0.6分布範圍影響示意圖
(波松比 =0.333、坡地坡度為26.6度、積水深度為0.2公尺) 86
參考文獻
(1) Anderson, D. A., Tannehill, J. C., and Pletcher, R. H.,“Computational Fluid Mechanics and Heat Transfer”, McGraw-Hill, New York, 1984.
(2) Biot, M. A.,“General theory of three-dimensional consolidation”, J. Appl. Phys., 12, 155-164, 1941.
(3) Churchill, R. V.,“Introduction to Complex Variables”, McGraw-Hill, New York, 1948.
(4) Churchill, R. V.,“Introduction to Complex Variables and Applications, 2d ed.”, McGraw-Hill, New York, 1960.
(5) Coulomb, C. A.,“Essai sur une application des regles de Maximums et Minimis a quelques Problems de Statique, relatifs a 1’Architecture”, Memoires de Mathematique et de Physique, Presentes, a 1’Architecture Royal des Sciences, Paris, Vol. 3, 38. 1776.
(6) DAS, B. M.,“Principles of Geotechnical Engineering”, PWS, Boston, 1994.
(7) Duncan, J. M., and Dunlop, P.,“Slopes in stiff-fissured clays and shales”, J. Soil Mech. Found. Div. Am. Soc. Civ. Eng., 95(SM2), 467-492, 1969.
(8) Eiseman, P. K., and Smith, R. E.,“Mesh Generation Using Algebraic Techniques”, Numerical Grid Generation Techniques, NASA Conference Publication 2166, pp. 73-120, 1980.
(9) Fletcher, C. A. J.,“Computational Techniques for Fluid Dynamics 1 (Fundamental and General Techniques)”, Springer-Verlag, New York, 1988.
(10) Forster, C., and Smith, L.,“Groundwater flow systems in mountainous terrain, 1, Numerical modeling technique”, Water Resour. Res., 24(7), 999-1010, 1988a.
(11) Forster, C., and Smith, L.,“Groundwater flow systems in mountainous terrain, 2, Controlling Factors”, Water Resour. Res., 24(7), 1011-1023, 1988b.
(12) Fourie, A. B., Rowe, D., and Blight, G. E.,“The effect of infiltration on the stability of the slopes of a dry ash dump”, Geotechnique, 49(1), 1-13, 1999.
(13) Fredlund, D. G., Rahardjo, H.,“Soil mechanics for unsaturated soils”, John Wiley & Sons, New York, 1995.
(14) Freeze, R. A., and Witherspoon, P. A.,“Theoretical analysis of regional groundwater flow, 1, Analytical and numerical solutions to the mathematical model”, Water Resour. Res., 2(4), 641-656, 1966.
(15) Freeze, R. A., and Witherspoon, P. A.,“Theoretical analysis of regional groundwater flow, 2, Effect of water-table configuration and subsurface permeability variation”, Water Resour. Res., 3(2), 623-634, 1967.
(16) Hodge, R. A., and Freeze, R. A.,“Groundwater flow systems and slope stability”, Can. Geotech. J., 14, 466-476, 1977.
(17) Hoffman, K. A., and Chiang, S. T.,“Computation Fluid Dynamics for Engineers”, Engineering Education System, 1993.
(18) Hoyaux, B., and Landanyi, B.,“Stress distribution due to gravity in a vertical rock bank”, Proc. Symp. Rock Mech., 10, 621-631, 1972.
(19) Iverson, R. M., and Major, J. J.,“Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization”, Water Resour. Res., 22(11), 1543-1548, 1986.
(20) Iverson, R. M., and Major, J. J.,“Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations”, Geol. Soc. Am. Bull., 99(4), 579-594, 1987.
(21) Iverson, R. M., and Reid, M. E.,“Gravity-Driven Groundwater Flow and Slope Failure Potential, 1, Elastic Effective-Stress model”, Water Resource Res., 28(3), 925-938, 1992.
(22) Iverson, R. M., and Reid, M. E.,“Gravity-Driven Groundwater Flow and Slope Failure Potential, 2, Effects of Slope Morphology, Material Properties, and Hydraulic Heterogeneity”, Water Resource Res., 28(3), 939-950, 1992.
(23) Johnson, B. H.,“VAHM-A Vertical Averaged Hydrodynamic Model Using Boundary-Fitted Coordinates”, U. S. Army Engineering Waterways Experiment Station, P. O. Box 631, Vicksburg, Miss.39180, 1980.
(24) Kowalsi, E. J.,“Boundary-Fitted Coordinate Systems for Arbitrary Computation Regions”, Numerical Grid Generation Techniques, NASA Conference Publication 2166, pp. 331-353, 1980.
(25) Lambe, T. W., and Whitman, R. V.,“Soil Mechanics”, SI Version, John Wiley, New York, 1979.
(26) Louis, C., Dessenne, J. L., and Feuga, B.,“Interaction between water flow phenomena and the mechanical behavior of soil or rock masses”, in Finite Element in Geomechanics, edited by Gudehus, G., pp. 479-511, John Wiley, New York, 1977.
(27) Malvern, L. E.,“Introduction to the Mechanics of a Continuous Medium”, Prentice-Hall, Englewood Cliffs, N. J., 1969.
(28) McTigue, D. E., and Mei, C. C.,“Gravity-induced stress near topography of small slope”, J. Geophys. Res., 86(B10), 9268-9278, 1981.
(29) Mohr, O.,“Welche Umstande Bedingen die Elastizitatsgrenze und den Bruch eines Materiales?”, Zeitschrift des Vereines Deutscher Ingenieure, Vol.44, 1524-1530, 1572-1577, 1900.
(30) Nash, D. F. T.,“A comparative review of limit-equilibrium methods of stability analysis”, in Slope Stability, Geotechnical Engineering and Geomorphology, edited by Anderson, M. G., and Richard, K. S., pp. 11-75, John Wiley, New York, 1987.
(31) Ng, C. W. W., and Shi, Q.,“A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage”, Computer and Geotechnics, 22(1), 1-28, 1998.
(32) Perloff, W. H., Baladi, G. Y., and Harr, M. E.,“Stress distribution within and under long elastic embankments”, Highw. Res. Rec., 181, 12-40, 1967.
(33) Phukan, A. L. T., Lo, K. Y., and LaRochelle, P.,“Stress and deformations of vertical slopes in elasto-plastic rocks”, Proc. Symp. Rock Mech., 11, 193-212, 1970.
(34) Rice, J. R., and Cleary, M. P.,“Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents”, Rev. Geophys. Space Phys., 14(2), 227-241, 1976.
(35) Rulon, J. J., and Freeze, R. A.,“Multiple seepage faces on layered slopes and their implications for slope-stability analysis”, Can. Geotech. J., 22, 347-356, 1985.
(36) Sandhu, R. S., and Wilson, E. L.,“Finite-element analysis of seepage in elastic media”, J. Eng. Mech. Div. Am. Soc. Civ. Eng., 95(EM3), 641-652, 1969.
(37) Savage, W. Z., H. S. Swolfs, and P. S. Powers,“Gravitational stresses in long symmetric ridges and valleys”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22(5), 291-302, 1985.
(38) Silvestri, V., and Tabib, C.,“Exact determination of gravity stresses in finite elastic slopes, Part I, Theoretical considerations”, Can. Geotech. J., 20, 47-54, 1983a.
(39) Silvestri, V., and Tabib, C.,“Exact determination of gravity stresses in finite elastic slopes, Part II, Application”, Can. Geotech. J., 20, 55-60, 1983a.
(40) Smith, R. E., and Weigel, B. L.,“Analytic and Approximate Boundary Fitted Coordinate Systems for Fluid Flow Simulation”, AIAA Paper 80-0192, Pasadena, California, 1980.
(41) Steger J. L., and Sorenson, R. L.,“Use of Hyperbolic Partial Differential Equations to Generate Body Fitted Coordinates”, Numerical Grid Generation Techniques, NASA Conference Publication 2166, pp. 463-478, 1980.
(42) Sturgul, J. R., Scheidegger, A. E., and Grinshpan, Z.,“Finite- element model of a mountain massif ”, Geology, 4, 439-442, 1976.
(43) Ter-Martirosyan, Z., and Akhpatelov, D.,“The stress state of an infinite slope with curvilinear boundary in the field of gravity and seepage ( in Russian with English abstract )”, J. Probl. Geomech., 5, 81-91, 1972.
(44) Terzaghi, K.,“Die Berechnung der Durchassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungsercheinungen”, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl., Abt. 2A, 132, 105-124, 1923.
(45) Terzaghi, K.,“Erdbaumechnic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna, 1925.
(46) Terzaghi, K.,“The shearing resistance of saturated soils”, Proc. Int. Conf. Soil Mech. Found. Eng., 1, 54-55, 1936.
(47) Terzaghi, K.,“Theoretical Soil Mechanics”, New York, pp270, 1943.
(48) Thompson, J. F.,“Numerical Solution of Flow Problems using Body Fitted Coordinate Systems”, Computational Fluid Dynamics Conference, vol. 1, (W. Kollmann, ed.), Hemisphere, Washington, D. C., 1980.
(49) Thompson, J. F., Thames, F. C., and Mastin, C. W.,“Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing any Number of Arbitrary Two-dimensional Bodies”, J. Comp. Phys., Vol. 15, pp. 299-319, 1974.
(50) Thompson, J. F., Thames, F. C., Mastin, C. W., and Shanks, S. P.,“Use of Numerically Generated Body-Fitted Coordinate Systems for Solution of the Navier-Stokes Equations”, Proc. AIAA. 2nd Computational Fluid Dynamics Conference, Hartford, Connecticut, pp. 68-80, 1975
(51) Toth, J.,“A theoretical analysis of groundwater flow in small drainage basins”, J. Geophys. Res., 68(B6), 4795-4812, 1963.
(52) Winslow, A.,“‘Equipotential’Zone of Two-dimension Meshes”, J. Comp. Phys., vol. 149, pp. 153-172, 1966.
(53) Zienkiewicz, O. C., “Continuum mechanics as an approach to rock mass problems”, in Rock Mechanics in Engineering Practice, edited by Stagg, K. G., and Zienkiewicz, O. C., pp. 237-273, John Wiley, New York, 1968.
(54) Zienkiewicz, O. C.,“The Finite Element Method, 3rd ed.”, 787 pp., McGraw-Hill, New York, 1977.
(55) Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W.,“A unified approach to soil mechanics including plasticity and visco-plasticity”, in Finite Element in Geomechanics, edited by Gudehus, G., pp. 151-177, John Wiley, New York, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top