跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂元鈞
研究生(外文):Yuan-Chun Lu
論文名稱:非水相液滲透係數-飽和度-毛細壓力關係之微模型試驗研究
論文名稱(外文):The Micro-Model Study of NAPL on The Relation Between Permeability-Saturation-Capillary-Pressure
指導教授:張良正張良正引用關係
指導教授(外文):Liang C.Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:113
中文關鍵詞:微模型滲透係數尺度原則
外文關鍵詞:micromodelpermeabilityscaling rule
相關次數:
  • 被引用被引用:7
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
非水相液(Non-Aqueous-Phase-Liquid, NAPL)雖然在於水中溶解度很低,惟其在自然界中不易被分解,且部分非水相液具有高毒性。因此,若不慎滲漏入土壤中,將對大環境形成重大威脅。而在探討NAPL在土層中傳輸及宿命的過程中,非水相液於土層中滲透係數、飽和度及毛細壓力的關係曲線為其中關鍵的一環。
傳統在探討相對滲透係數與飽和度關係時,多以砂箱模型實驗。然而砂箱實驗有其不易控制、準確性較低及實驗重複性差等缺點。本研究以可透視微模型,配合數位影像分析觀察多孔界質中多相流的微觀行為,並且取得水、空氣、柴油(LNAPL)和四氯乙烷(DNAPL)各兩相之間的相對滲透係數-飽和度-毛細壓力的關係曲線。使用可透視微模型實驗,其優點在於可清楚的觀察到多孔介質中多相流體的流動機制,配合數位影像分析,更可精確的測量介質中的飽和度。利用雷射雕刻工具,我們可以複製出許多完全相同的多孔介質,以進行多組重複、對照性的實驗。在探討飽和度與毛細壓力關係曲線圖中可發現,水對空氣流體對之實驗與理論值最為吻合,以此流體對應用比例原則推估出的比例值也較能與實驗值符合,相對滲透係數與飽和度關係曲線中亦能與經驗曲線相符合。本研究所取得的實驗數據,並將可進一步做為數值模式之輸入參數,探討此關係曲線對NAPL在土壤中傳輸及宿命之影響。
Although the solubility of Non-Aqueous-Phase-Liquid (NAPL) is low in water, decomposing NAPL in nature is extremely difficult and parts of NAPL are high-toxic. Consequently, the accidental leakage of NAPL into groundwater due to improper storage have threatened the environment. The study of fate and transport process of NAPL in subsurface is an important environmental issue, and the curve of the relation between the permeability, saturation, and capillary pressure of NAPL in the subsurface plays a pivotal role in describing the process.
Although the sand tank model is conventionally adopted to examine the relation between permeability and saturation, this model is difficult to control, has a low accuracy, and lacks experience in repeats. This study adopts the perspective micro-model and performs digital image analysis (DIA) to examine the micro-behavior of multiphase flow systems in porous media and obtain the curve of relation between relative permeability, saturation, and capillary pressure between every two phases of water, air, LNAPL, and Tetrachloroethane(DNAPL). The perspective micro-model allows experimenters to clearly observe the multiphase flow systems in porous media. Additionally combining the model with digital image analysis, allows us to precisely measure the saturation of media. Moreover, by using laser tools, a large number of porous media which are identical in all aspects can be reproduced to repeat numerous comparative sets of an experiment. As for the curve that expresses the relation between saturation and capillary pressure, experimental results of water-air flow system corresponds to the theoretical data. Additionally, the proportion derived from the scaling rule is congruous to the experimental data. Moreover, the curve that expresses the relation of the relative permeability and saturation is nearly the same as the experimental curve. Experimental data in this study will go a step further to be the parameters of numerical model that describes how the curve of relation affects NAPL with its fate and transfer process in ground.
第一章 緒論
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 4
第二章 研究步驟
第三章 相關理論及研究
3.1 土壤保持特性曲線 10
3.1.1 保持曲線之定義 10
3.1.2 遲滯效應 11
3.2 比例原則 12
3.3 流體在不飽和層中的流動行為 14
3.3.1 達西定律 14
3.3.2 有機液體在不飽和層中的行為 15
第四章 研究方法
4.1 雷射雕刻技術 21
4.2 試驗裝置 21
4.2.1 微模型 22
4.2.2 試驗液體 26
4.2.3 壓力控制系統 27
4.2.4 CCD攝影機 28
4.2.5 XY平台 29
4.3 矽酸鈉特性及使用前後之比較 29
4.3.1 矽酸鈉的特性 29
4.3.2 矽酸鈉使用前後之比較 30
4.4 實驗程序 30
4.4.1 S-P實驗程序 31
4.4.2 k-S實驗程序 35
第五章 實驗結果討論與比較
5.1 S-P relation 44
5.1.1 S-P各組實驗之討論 46
5.1.2 綜合討論 49
5.2 k-S relation 50
5.2.1 k-S各組實驗之討論 51
5.2.2 van Genuchten經驗公式之討論 52
第六章 結論與建議
6.1 結論 93
6.2 建議 94
第七章 參考文獻
1. 石永祺,”可透視微模型實驗於毛細壓力-飽和度關係之研究”, 國立交通大學土木工程研究所碩士論文,2001。
2. 陳宇文,”類神經網路於入滲池最佳化設計之應用”,國立交通大學土木工程研究所碩士論文,1999。
3. 陳式千,”地下水污染監測系統調查研究”,行政院環境保護署,1992。
4. 陳鴻輝,”壓密導致孔隙率變化對保水曲線的影響”,國立中央大學土木工程研究所碩士碩文,1990。
5. 歐國隆,”遲滯效應及尺度原則對NAPLs於孔隙介質中傳輸模擬之影響”, 國立交通大學土木工程研究所碩士論文,2000。
6. 靳佩芳,”以示蹤劑試驗推估LNAPLs對地下水污染行為之研究”,國立中興大學環境工程研究所碩士論文,1998。
7. 黃進富,”土壤中水/有機液體保持特性研究”,國立交通大學土木工程研究所碩士論文,1996。
8. 鄭淑華,”不飽和層中有機液體保持特性研究”,國立交通大學土木工程研究所碩士論文,1997。
9. 盧至人,”受氯化有機物污染之地下水的生物復育”,行政院環境保護署,1992。
10. Abriola, L. M., and G. F. Pinder, “A multiphase approach to the modeling of porous media contamination, by organic compounds, 2, Numerical simulation”, Water Resour. Res., 21, 19-26, 1985.
11. Baker, L. E., “Three-phase relative permeability correlations”, Paper 17369. Soc. of Pet. Eng., Tulsa OK, 1988.
12. Bedient, Philip B., Rifai, Hanadi S., and Newell, Charles J., “Ground water contamination: transport and remediation”, Englewood Cliffs/PTR Prentice Hall , 1994.
13. Calhoun, Jr., J.C., Lewis, Jr., M., and Newman, R.C., “Experiments on the capillary properties of porous solids”, Pet. Trans. AIME, pp.189-196,1949.
14. C. Jia , K Shing , Y.C. Yortsos,” Visualization and simulation of non-aqueous phase liquids solubilization in pore networks.” Journal of Contaminant Hydrology 35(1999) 363-387.
15. Corey, A. T., “Mechanics of immiscible fluids in porous media”, Water Resources Publications, Fort Collins, CO, 2nd ed., 35-39, 1986.
16. Davidson, J. M., Nielsen, D. R., and Biggar, J. W., “The dependency of Soil Water Uptake and Release on the Applied Pressure Increment”, Soil Science Society of America, Proc., 30, 198-304, 1966.
17. Delshad, M. and Pope, G. A., “Comparison of the three-phase relative permeability models”, Transp. In Porous Media, 4, 59-83, 1989.
18. Demond, A. H. and Roberts, P. V., “Effect of interfacial forces on two-phase capillary pressure-saturation relationships”, Water Resour. Res., 27, 423-437,1991.
19. Demond, A. H. and Roberts, P. V., “Estimation of two-phase relative permeability relationships for organic liquid contaminants”, Water Resour. Res., 29, 1081-1090, 1993.
20. Fetter,C.W.,”Containant Hydrogeology”,Macmillan Publishing Company ,New York,pp.168-175.,1993
21. Garden, W.R.,”Calculation of capillary conductivity from press plate outflow data,”Proceeding of the Soil Science Society of Ameica,Vol.20,No.3pp.317-320.
22. Guarnaccia, J. F., G. F. Pinder, and M. Fishman, “NAPL, Simulator Documentation, Final Report”, EPA Cooperative Agreement No. CR-820499, 1997.
23. Haines, W.B.,”Studies in the Physical Properties of Soil:V. The Hyeteresis Effect in Capillary Properties and the Modes of Moisture Associated Therewith,”Journal of Agricultural Science,Vol.20,pp.97-116,1930.
24. Hillel,Daniel.”Fundamentals of Soil Physics”,New York:Academic Press,Inc,413 pp.,1980.
25. Hoa, H. T., R. Gaudu, and C. Thirriot, “Influence of the hysteresis effect on transient flows in saturated-unsaturated porous media”, Water Resour. Res., 13, 992-996, 1977.
26. Jiamin Wan and John L.Wilson, Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media.”,Water Resources Research,Vol.30,No.1,Page 11-23,January 1994.
27. Kaluarachchi, J., and J. C. Parker, “Effects of hysteresis on water flow in the unsaturated zone”, Water Resour. Res., in press, 1988.
28. Kool, J. B., and J. C. Parker, “Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties”, Water Resour. Res., 23, 105-114, 1987.
29. Lenhard, R. J., and J. C. Parker, “Measurement and Prediction of Saturation-Pressure Relationships in Three-Phase Porous Media Systems”, Journal of Contaminant Hydrology, 1, 407-424, 1987.
30. Lenhard, R. J., M. Oostrom, C. S. Simmons, and M.D. White,” Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise”, Journal of Contaminant Hydrology, 19, 47-67, 1995.
31. Leverett, M. C., “Capillary behavior in porous solids”, Trans. AIME, 142, 152-169, 1941.
32. Lyman, W. J., Reehl, W. F. and Rosenblatt, D. H., “Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds”, McGraw-Hill, New York, N.Y., 1982.
33. Mercer, J. W., and R. M. Cohen, “A review of immiscible fluids in the subsurface properties, models, characterization and remediation”, J. Contam. Hydrol. Vol. 6, 107-163, 1990.
34. Mualem, Y., “A new model for predicting the hydraulic conductivity of unsaturated porous media”, Water Resour. Res., 12(3), 513-522, 1976
35. M.Yavuz Corapcioglu, Paula Fedirchuk,” Glass bead micromodel study of solute transport ” ,Journal of Contaiminant Hydrology 36(1999) 209-230.
36. Oostrom, M., and R. J. Lenhard, “Comparison of relative permeability-saturation-pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in sandy porous media”, Advances in Water Resources, 21, 145-157, 1998.
37. Parker, J. C. and R. J. Lenhard, “A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations”, Water Resour. Res., 23(12), 2187-2196, 1987.
38. Parker, J. C. and R. J. Lenhard, “A model for hysteretic constitutive relations governing multiphase flow: 2.Permeability-Saturation relations”, Water Resour. Res., 23(12), 2197-2206, 1987.
39. Parker, J. C., R. J. Lenhard, and T. Kuppusamy, “A parametric model for constitutive properties governing multiphase flow in porous media”, Water Resour. Res., 23(4), 618-624, 1987.
40. Pinder, G. F., L. M. Abriola, “On the simulation of nonaqueous phase organic compounds in the subsurface”, Water Resour. Res., 22(9), 109-119, 1986.
41. Randall J.Charbeneau, “Groungwater Hydraulics and Pollutant Transport”, Prentice Hall , 2000.
42. Soll, W.E. , Soll, W.E. and Wilson J.L.,”Micromodel Studies of three-Fluid Porous Media Systems:Pore-Scale Process Relating to Capillary Pressure-Saturation Relationships ,” Water Resources Research ,Vol.29,No.9,pages 2963-2974,September 1993.
43. Spillette, A. G., J. G. Hillestad, and H. L. Stone, “A high-stability sequential solution approach to reservoir simulation”, Soc. Pet. Eng. 48th Annual Meeting, Las Vegas, Nev., S.P.E. Paper No. 4542, 14 pages, 1973.
44. Stevenson, F.J., “Humus Chemistry”, Wiley and Sons, 444p.,1982.
45. Stone, H. L., “Estimation of three-phase relative permeability and residual oil data”, J. Can. Pet. Technol., 12, 53-61, 1973.
46. Van Geel, P. J., and J. F. Sykes, “Laboratory and Model Simulations of A Lnapl Spill in A Variably-Saturated Sand, 2. Comparison of Laboratory and Model Results”, Journal of Contaminant Hydrology, 17, 27-53, 1994.
47. van Genuchten, M. Th., “A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. of Am. J., 44, 892-898, 1980.
48. Williams, P.J. ”The Surface of the Earth,an introduction to geotechical science,”Longman Inc.,New York.,1982.
49. Wilson, J. L., S. H. Conrad, W. R. Mason, W. Peplinski and E. Hagen, “Laboratory investigation of residual liquid organics”, USEPA/600/6-90/004, Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma, 267pp, 1990.
50. Wilson, J. T., “The pore level spatial distribution and saturation of organic liquids in porous media”, Proc. NWWA Conf. on Petroleum Hydrocarbons and Organic Solvent in the Subsurface, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊