跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉懷東
研究生(外文):Liu hwai dong
論文名稱:三維頂部驅動矩形槽中流場之初始發展與演化
論文名稱(外文):The initial development and evolution of flows in a three-dimensional lid-driven cavity
指導教授:蔡武廷
指導教授(外文):tsai wu ting
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:三維頂部驅動矩形槽展向噴流末端牆面漩渦TGL漩渦渦度擬能
外文關鍵詞:three-dimensional lid-driven cavityspanwise jet flowend wall vorticesTaylor-Gortler like vorticesenstrophy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討三維矩形槽中初始為靜止,受突然平移之頂部水平驅動而發展之黏性流流場。利用數值解析三維之無因次化,守恆型式Navier-Stokes方程式,並且滿足槽壁之邊界條件,以求得三維矩形槽中流場之速度與壓力。進一步探討此流場初始近似二維,受槽壁之影響進而發展為複雜之三維運動過程。而在兩側末端牆面出現之漩渦,以及規則出現於展延方向之TGL(Taylor-Gortler-Like)漩渦,此二類漩渦之生成與演化亦在我們討論的範圍之內。研究結果顯示:三維矩形槽中流場初期,有一展向噴流形成使得流場由近似二維發展為三維運動,而展向噴流之生成與末端牆面漩渦的出現有密切關係;隨著無因次時間之增加,上游區域之展向運動複雜度較下游為高,而近對稱面區域之螺旋往復運動較靠近末端牆面區域為多,在展延規則出現的TGL漩渦,隨著主漩渦流線延伸之現象亦被證實出現在我們的計算結果中。

Lid-driven flow in a rectangular cavity of span to width aspect ratio of 3:1 and depth to width aspect ratio of 1:1 is simulated numerically at Reynolds number 1500 to gain physical insight into the initial development of the three-dimensional perturbation and its subsequent evolution. The emphases are on the end-wall effect which causes the initial almost-two-dimensional flow to develop into a three-dimensional flow structure, and the evolution of such a flow structure into Taylor-Gortler-like(TGL) vortices distributing along the cavity span in planes perpendicular to the lid. It is found that spanwise jet flows and corner vortices form near the end walls immediately after the start of the motion of the lid. As time proceeds, the disturbed spanwise motions in the upstream area become more complex than those in the downstream area, and the circulating motions of fluid particles in the region near the symmetric plane are more active than those near the end walls. The axes of the TGL vortices are found to stretch along the streamlines of the primary recirculating flow.

目 錄
誌謝
Abstract
摘要
目錄
圖目錄
壹、 前言
1﹒1 問題簡述
1﹒2 文獻回顧
1﹒3 研究動機
貳、 控制方程式與邊界條件
2﹒1控制方程式
2﹒2 邊界條件
參、數值方法
3﹒1 控制方程式的離散
3﹒2 邊界條件的離散
3﹒3 壓力Poisson 方程式的求解
3﹒4 數值計算之流程
肆、數值計算之參數與比較
4﹒1 數值計算之參數設定
4﹒2 與他人之數值比較
伍、三維流場之初始發展與演化
5﹒1 流場的初始發展
5﹒2 展延方向運動之複雜度
5﹒3 末端牆面漩渦(End-wall vortices)之觀察
5﹒4 Taylor-Gortler like 漩渦之生成與演化
陸、結論與未來展望
參考資料

參考資料
1. Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991 Global stability of a lid-driven cavity with throughflow:Flow visualization studies. Phys. Fluids A, 3, 2081-2091.
2. Babu, V. & Korpela, S. A. 1994 Numercial solution of the incompressible, three-dimensional Navier-Stokes equations. Comput. Fluids, 23,675-691.
3. Barragy, E. & Carey, G. F. 1997 Stream function-vorticity driven cavity solution using p finite elements. Comput. Fluids 26, 455-468.
4. Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech., 1:1 77-90.
5. Benjamin A. S., Denny, V. E. 1979 On the convergence of numerical solutions for 2-D flows in a cavity at large Re. J. Comput. Phys., 33, 340-358.
6. Benson, J. D. & Aidun, C. K. 1992 Transition to unsteady nonperiodic state in a through-flow lid-driven cavity. Phys. Fluids A , 4 (10), 2316-2319.
7. Botella, O. & Peyret, R. 1998 Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 113-151.
8. Burggraf, O. R. 1966 Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech., 24, 113-151.
9. Chiang, T. P., Hwang, R. R. & Sheu, W. H. 1996 Finite volume analysis of spiral motion in a rectangular lid-driven cavity. Int. J. Numer. Meth. Fluids, 23, 325-346.
10. Chiang, T. P., Hwang, R. R. & Sheu, W. H. 1997 On end-wall corner vortices in a lid-driven cavity. ASME J. Fluids Engng., 119, 201-204.
11. Chiang, T. P. & Sheu, W. H. 1997 Numerical prediction of eddy structure in a shear-driven cavity. Comput. Mechanics, 20,379-396.
12. Chiang, T. P., Sheu, W. H. & Hwang, R. R. 1998 Effect of Reynolds number on the eddy structure in a lid-driven cavity. Int. J. Numer. Meth. Fluids, 26, 557-579.
13. Chiang, T. P., Sheu, W. H. & Hwang, R. R. 1997 Three-Dimensional vortex dynamics in a shear-driven rectangular cavity. IJCFD, 8, 201-214.
14. Cortes, A. B. & Miller, J. D. 1994 Numerical experiments with the lid driven cavity flow problem. Comput. Fluids, 23, 1005-1027.
15. Deville, M., Le, T.-H. & Morchoisne, Y.(Eds.) 1992 Numerical simulation of 3-D incompressible unsteady viscous laminar flows. Notes on Numerical Fluids Mechancis, 36, A GAMM-Workshop.
16. Freitas, C. J., Street, A. N., Findikakis A. N. & Koseff J. R 1985 Numerical simulation of three-dimensional flow in a cavity. Int. J. Numer. Meth. Fluids, 5, 561-575.
17. Freitas, C. J. & Street, R. L. 1988 Non-linear transient phenomena in a complex recirculating flow: a numerical investigation. Int. J. Numer. Meth. Fluids, 8, 769-802.
18. Ghia, U., Ghia, K. N. & Shin, C. T. 1982 High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys., 48, 387-411.
19. Gortler, H. 1954 On the three-dimensional instability of laminar boundary layers on concave walls. NACA Techincal Mem., 1375.
20. Kawaguti, M. 1961 Numerical solution of the Navier-Stokes equations for the flow in a two dimensional cavity. J. Phys. Soc. Japan 16, 2307-2315.
21. Kato, Y., Kawai, H. & Tanahashi, T. 1990 Numerical flow analysis in a cubic cavity by the GSMAC finite-element method. JSME Int. J. Ser. II, 33, 649-658
22. Koseff, J. R. & Street, R. L. 1984 On end wall effects in a lid-driven cavity flow. ASME J. Fluids Engng., 106, 385-389.
23. Koseff, J. R. & Street, R. L. 1984 The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. ASME J. Fluids Engng., 106, 390-398.
24. Koseff, J. R. & Street, R. L. 1984 Visualization studies of a shear driven three-dimensional recirculating flow. ASME J. Fluids Engng., 106, 21-29.
25. Ku, H. C., Hirsh, R. S. & Thomas D. T., 1987 A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations. J. Comput. Phys., 70, 439-462
26. Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech., 28, 643-655.
27. Prasad, A. K. & Koseff, J. R. 1989 Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids, A, 1,208-218.
28. Schreiber, R. & Keller, H. B. 1983 Driven cavity flows by efficient numerical techniques. J. Comput. Phys., 49, 310-333.
29. Taylor, G. I. 1923 Stability of viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. (London), 223, 289-343.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top