跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊昇學
研究生(外文):Sheng-Hsueh Yang
論文名稱:彩色質點影像測速法於瞬間潰壩流場之試驗研究
論文名稱(外文):Experimental Study on Instantaneous Dam-Break Flows Using Color Particle Image Velocimetry Method
指導教授:葉克家葉克家引用關係
指導教授(外文):Keh-Chia Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:44
中文關鍵詞:彩色質點影像測素法瞬間潰壩
外文關鍵詞:color particle image velocimetry (CPIV)instantaneous dam-break
相關次數:
  • 被引用被引用:11
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
本文旨在利用CPIV法進行流場可視化之研究,係利用雷射光及多彩聲光調變器(PCAOM)將雷色光束區分為藍綠兩光束形成二維雷射光頁,再利用彩色數位相機(Color CCD)之技術所組合成。在流體中加入與水相近密度之顯影塑膠顆粒(1.1 g/cm3),在藍綠相間隔之雷射光頁下顯影其流場變化,並擷取流場變化之數位影像。再將所擷取之數位影像訊號,進行數位相關法分析求得位移量,再除以曝光時間間距而得知速度值。
其CPIV方法之準確性分析係利用定速轉盤驗證之,於已知轉盤速度下進行影像擷取、影像分析與數為相關計算,求得之速度值再進行比對,作為試驗計算之驗證對照組。隨後進行光滑及糙度底床試驗之瞬間流場之研究,因床質材料糙度增加,造成流場於近底床附近有明顯地變化,形成渦流現象。最後應用於瞬間潰壩後流場流況作分析,將瞬間潰霸所形成之變量流利用攝影機拍攝,並分析其水位隨時間之變化情形、及動床底床因瞬間潰決後下游底床利用描繪方式記錄床形變化,及利用CPIV法將所設定之不同渠段之流場,透過數位影像及運算程式進行可視化分析研究 。
The purpose of this study is to investigate flow field visualization by using the color particle image velocimetry (CPIV) method. This method uses the laser light, polychromatic acousto-optic modulator (PCAOM) which separates the laser beam into blue and green color light sheets, and digital color charge coupled device (CCD). Polystyrene of diameter 75μm and density 1.1 g/cm3 is used as the seeding material. The obtained digital image is first transferred into digital signal data, and then the displacement of the seeding particles is estimated by the cross correlation analysis. The corresponding velocity of the particle is equal to the displacement divided by the exposure time interval. To velocity the accuracy of the CPIV method, the experiment on the stability rotating disc is executed. The computed rotating velocity is compared with the known rotating velocity and the relative error is acceptable. Then, the CPIV method is applied to study the flow fields for smooth and rough channel beds. Irregular eddy zones occur due to the existence of the rough bed. Finally, the CPIV method associated with the video camera is applied to study the flow field of instantaneous dam-break case. The variations of water surface and bed surface are recorded by the video camera. In the same time, flow field visualization of propagation of the model dam-break wave is by the CPIV method.
目錄
中文摘要 II
英文摘要 III
圖目錄 VI
第一章 導論 1
1-1 研究動機 1
1-2文獻回顧 2
1-2-1 實驗由觀測階段至攝影階段 2
1-2-2 相關瞬間潰壩試驗 4
1-2-3 質點影像測速法 5
1-3 研究方法 7
1-4組織結構 7
第二章 研究設備與原理 9
2-1儀器設備 9
2-2 彩色質點影像測速法(CPIV) 11
2-3 CPIV影像初步處理方法 12
2-4程式計算分析 12
2-4-1互相關函數法(cross correlation) 13
2-4-2圖形比對正相關法 14
2-4-3質問窗內之質點之比對演算 15
2-4-4影像分析之誤差來源 15
2-5 子畫素修正 16
2-6不一致資料去除與資料補齊 17
第三章 彩色質點影像測速法之驗證試驗 19
3-1試驗進行步驟 19
3-2驗證試驗-二維定速轉盤試驗 20
第四章 光滑底床及糙度底床之水槽試驗 23
4.1光滑底床之水槽試驗 24
4-1-1光滑底床結果分析 25
4.2 糙度底床之流場試驗 27
4-2-1糙度底床結果分析 27
第五章 瞬間潰壩試驗 29
5.1 定床瞬間潰壩試驗 29
5-1-1定床瞬間潰壩結果分析 30
5-2 瞬間潰壩之動床試驗 31
5-2-1動床瞬間潰壩結果分析 33
5-3 瞬間潰壩之綜合結果分析 35
第六章 結論與建議 37
6-1結論 37
6-2 建議 38
參考文獻 40
參考文獻
1. Adrian, R. J. (1986), ”Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics, 25 , 3855-3858.
2. Adrian, R. J. (1991), “Particle image techniques for experimental fluid mechanics”, Annual Review of Fluid Mechanics, 23, 261-304.
3. Bell, S. W., Elliot, R. C. and Chaudhry, M. H. (1992), ”Experimental results of two-dimensional dam-break flows”, Journal of Hydraulic Research, IAHR, 30(2), 225-252.
4. Bellos, C. V., Soulis, J. V. and Sakkas, J.G. (1992), ”Experimental investigation of two-dimensional dam-break induced flows”, J. Hydraulic Research, IAHR, 30(1), 47-63.
5. Best, J. L. (1992), ”On the entraunment of sediment and the initial of bed defects: insight fromrecent developments within turbulent boundary layer research”, Sedimentology, 39, 797-811.
6. Best, J. L (1993), “On the interactions between turbulent flow structure, sediment transport and bedform development: some considerations from recent experimental research”, Turbulence perspectives on flow and sediment transport, John Wiley and Sons, 61-92.
7. Chpart, H., Young, D. L. and Zech, Y. (2002), “Voronoi imaging methods for measurement of granular flows”, Experiments in Fluids, 32, 121-135.
8. Chpart, H. and Young, D. L. (1998), ”Formation of a jump by the dam-break wave over a granular bed”, J. Fluid Mech., 372, 165-187.
9. Cowen, E. A. and Monismith, S. G. (1997), ”A hybrid digital particle tracking velocimetry technique”, Experiments in Fluids, 22, 199-211.
10. Fincham, A. M. and Spedding, G. R. (1997), “Low cost, high resolution DPIV for measurement of turbulent fluid flow”, Experiments in Fluids,23, 449-462.
11. Fincham, A. M. and Delerce, G. (2000), “Advanced optimization of correlation imaging veloctmetry algorithm”, Experiments in Fluids, (suppl.), s13-s22.
12. Fraccarollo, L. and Toro, E. F. (1995), “Experimental and numerical assessment of the shallow water model for two dimensional dam-break type problems”, J. Hydraulic Research, IAHR, 33(6), 843-862.
13. Forliti, D. J., Strykowski, P. J. and Debatin, K. (2000), “Bias and precision errors of digital particle image velocimetry”, Experiments in Fluids, 28, 436-447.
14. Gogineni, S., Goss, L., Pestian, D. and River, R. (1998), “Two-color digital PIV employing a single CCD camera”, Experiments in Fluids, 25, 320-328.
15. Guezennec, Y. G. and Kirtitsis, N.(1990), “Statistic investigation of errors in particle image velocimetry”, Experiments in Fluids, 10, 138-146.
16. Gui, L. and Merzkirch, W. (1998), ”Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings” Experiments in Fluids, 24, 66-69.
17. Gui, L., Merzkirch, W and Fei, R. (2000), ”A digital mask technique for reducing the Bias error of the correlation-based PIV interrogation algorithm”, Experiments in Flows, 29, 30-35.
18. He, Z. H., Sutton, M. A., Ranson, W. F. and Peters, W. H. (1984), “Two dimension velocity measurements by use of digital speckle correlation techniques”, Experimental Mechanics, 7, 117-121.
19. Hesselink, L. (1988), “Digital image processing in flow visualization”, Annual Review of Fluid Mechanics, 20, 421-485.
20. Huang, H., Dabiri, D. and Gharib, M (1997), “On errors of digital particle image velocimetry”, Meas. Sci. Technol., 8, 1427-1440.
21. Jaw, S. Y. and Wu, J. L. (2000), ”Alternating color image anemometry and it’s application “, Journal of Flow Visualization and Image Processing, 7, 189-205.
22. Jaw, S. Y. and Chen, J. P. (2000), “Development of color particle image velocimetry and it’s application in rotating flow”, 9th Inter. Symp. on Flow Visualization, 152, 1-10.
23. Jaw, S.Y., Haik, Y., and Chen, J. P. (2001), “Visualization of magnetic micro-sphere mixing in biological fluid flow using color PIV”, Mechanics and Material Conference, San Diego, U.S.A. 27-29
24. Kline, S. J., Reynolds, W. C., Schraub, F. A. and Runstadler, P.W. (1967), “The structure of turbulent boundary layers”, J. Fluid Mech., 30, 741-773.
25. Landreth, C. C.and Adrian, R. J.(1988), “Electrooptical image shifting for particle image velocimetry”, Applied Optics, 27 ,4216-4220.
26. Lee, H. Y., Chen, Y. H., You. J. H., and Lin, Y. T. (2000), “Investigations of Continuous bed load saltating process”, J. Hydraulic engineering, ASCE, 126(9), 691-700.
27. Leeder, M. R. (1983), “On the interactions between turbulent flow, sediment transport and bedform mechanics in channelized flow”, International Association of Sedimentologists Special Publication, 6, 5-18.
28. Lourenco, L. and Krothapalli, A. (1995), “On the accuracy of velocity and vorticity measurements with PIV.”, Exp. Fluids, 18, 421-428.
29. Marzouk, Y. M. and Hart, D. P. (1998), “Asymmetric autocorrelation function to resolve directional ambiguity in PIV images”, Exp. Fluids, 25, 401-408.
30. Meynart, R. (1980), “Asymmetric autocorrelation function to resolve directional ambiguity in PIV images”, Exp. Fluids, 19, 1385-1386.
31. Miller, S. D. and Chaudhry, M. H. (1989), “Dam break flows in a curved channel”, Journal of Hydraulic Engineering, ASCE, 115(11), 1465-1478.
32. Nogueira, J. Lecuona, A. and Rodriguez, P. A. (1997), “Data validation, false vectors correction and derived magnitudes calculation on PIV data”, Meas. Science and Technology, 8, 1493-1501.
33. Rehm, J. E. and Clemens, N. T. (1999) , “An improved method for enhancing the resolution of conventional double-exposure single frame particle velocimetry”, Experiments in Fluids. 26, 497-504.
34. Reynold, G. A., Short, M. and Whiffen, M. C. (1985), ”Automated reduction of instantaneous flow field images”, Optical Engineering, 24, 475-479.
35. Rosenfeld, A. and Kak, A. C. (1976), ”Digital picture processing”, 1, Academic Press, New York.
36. Schuster, R. L. and Costa, J. E. (1986), ”A perspective on landslide dams” Landslide Dams, Processes, Risk and Mitigation, ASCE No. 3, 1-20.
37. Sutherland, A. J. (1967), “Proposed mechanism for sediment entrainment by turbulent flows”, J. Geophysical Research, 72, 6183-6194.
38. Vogel, A. and Lauterborn, W. (1988), “Time resolved particle velocimetry used in the investigation of cavitation bubble dynamics”, Applied Optics, 27, 1869-1876.
39. Westweel, J. (1997), “Fundamentals of digital particle image velocimetry”, Meas. Sci. Technology, 8, 1379-1392.
40. Willert, C. E. and Gharib, M. (1991),” Digital particle image velocimetry”, Exp. Fluids, 10, 191-193.
41. 陳樹群(1999), “堰塞湖潰決機制與減災工法研究”, 中華水土保持學報, 30(4), 299-311.
42. 陳樹群(2000), “集集地震引發之堰塞湖類型及其潰決機制”, 九二一地震後坡地災害及其對策研究研討會1-21.
43. 錢寧、萬兆惠(1991), “泥沙運移力學”, 科學出版社.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top