跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭志榮
研究生(外文):Chih-Jung Kuo
論文名稱:晶圓製造廠考量製程步驟間搬運問題下之生產週期時間估算模式
論文名稱(外文):Cycle Time Estimation with Consideration of Transportation between Process Steps in Wafer Fabrication
指導教授:鍾淑馨鍾淑馨引用關係彭文理彭文理引用關係
指導教授(外文):Shu-Hsing ChungWen-Lea Pearn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:70
中文關鍵詞:晶圓製造設施規劃車數估算搬運時間生產週期時間
外文關鍵詞:wafer fabricationlayoutnumber of OHT estimationtransportation timeproduction cycle time
相關次數:
  • 被引用被引用:6
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
晶圓製造廠為達成高達交率、高獲利的目標,有效的掌控生產週期時間有絕對的必要性。因此,本文應用多工單等級區段基礎式週期時間演算法(BBCT-MP),輔以本研究所發展出之車數規劃與搬運時間的估算模式,進而推估生產週期時間。
本文包含四大模組,在長程規劃模組中,估算系統所需之合適車數,使生產活動受搬運車影響而延遲的可能性降到最低;在中程規劃模組方面,承接長程規劃之車數估算結果,分析系統所需的總搬運時間,依製程步驟之順序,逐一與負荷因子或批量因子進行比對,估算各產品等級的生產週期時間;短程規劃模組中,以連批固定在製品量法制定投料法則;在現在派工模組上,本文以MIVS(Minimum Inventory Variability Schedule)派工法則為基本概念訂定合適之派車法則,以避免模擬工廠的控制不當,造成生產週期時間不必要的拉長,進而提高交期的達成度。
經實驗顯示,即使設置規劃或產品比例的改變,本文所推估的車數,可以在維持瓶頸機臺利用率的前提下,而不致造成車輛資源的浪費;在產品生產週期時間估算值與模擬結果相比較下,平均誤差皆小於3%,交期的達成度亦有98%以上之水準,故整體而言,本文所發展之生產模式,具有即時性與有效性,可作為生產規劃之搬運問題的考量上的參考依據。
To achieve the high delivery and high profit target, it’s necessary for wafer fabrication to control the product cycle time effectively. Hence, this research estimates the product cycle time with applying the Block-Based Cycle Time Estimation with Multiple-Priority Orders (BBCT-MP), and the number of overhead hoist transporter (OHT) plan and the transportation time estimation proposed in this research.
This research proposed contains four modules. First, the aggregate plan (AP) module estimates the ideal number of OHT of the system to minimize the probability of production delay resulted from the OHT. Secondly, the master production schedule (MPS) module follows the number of OHT planned in the aggregate planning module, and analyzes the transportation time needed in each process step, compares the transportation time with the queuing time resulted by the loading factor or the batch factor in the order of process step to estimate the product cycle time of each priority and product. Thirdly, the detail schedule (DS) module makes the release rule with the batch-CONWIP release rule. Finally, the production activity control (PAC) module designs the vehicle management based on the concept of Minimum Inventory Variability Schedule (MIVS) in case the increase of product cycle time, and achieves a high on-time-delivery.
Simulation experiment reveals that on the premise of keeping the bottleneck machine utilization, even the layout or product mix changes, the number of OHT proposed in this module won’t make any OHT be a waste. Compare the estimated product cycle time and the simulation result, the average error is less than 3%, and the achievement of on-time-delivery is higher than 98%. Consequently, the module proposed in this research is effective and efficient, and can be a feasible reference of production plan on the consideration of transportation.
摘 要 i
Abstract ii
感 謝 状 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 vii
符號一覽表 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 1
1.3研究範圍與限制 2
1.4研究方法 2
第二章 文獻探討 4
2.1生產週期時間 4
2.2自動化物料搬運系統 5
2.2.1設施規劃 7
2.2.1.1軌道佈置 7
2.2.1.2廠區佈置 9
2.2.2車輛相關問題 10
2.2.2.1搬運車系統 10
2.2.2.2車輛數問題 11
2.2.3控制問題 12
第三章 模式構建 14
3.1 問題定義與分析 14
3.2 整體邏輯與架構 15
3.3 長程規劃─車數估算 17
3.4 中程規劃─生產週期時間估算與投料表 19
3.4.1 負荷因子等候時間之估算─M/M/c等候模式 20
3.4.2 批量因子等候時間之估算─區段基礎式週期時間估算法 20
3.4.3 搬運時間之估算 21
3.4.4 產品等級別生產週期時間 26
3.4.5 投料循環表 29
3.5 短程規劃與現場派工 31
3.5.1 短程規劃 31
3.5.2 現場派工 32
第四章 實例驗證 36
4.1 系統環境說明 36
4.2案例說明與驗證 39
4.2.1長程規劃模組估算之執行過程 39
4.2.2中程規劃模組估算之執行過程 42
4.2.3短程規劃與現場派工模組估算之執行過程 54
4.3綜合分析研究 59
第五章 結論與未來研究方向 66
5.1 結論 66
5.2未來研究方向 67
參考文獻 68
[1] Aneke, N.A.G., and Carrie, A.S., “A Design Technique for the Layout of muitiproduct flowlines.” International Journal of Production Research, Vol.24, No.3, pp.471-481, 1986.
[2] Bilge, U., and Tanchoco, J.M.A., “AGV System with Muiti-load Carries : Basic Issues and Potential Benefits”, Journal of Manufacturing System, Vol.16, No.3, pp.159-174, 1997.
[3] Bozer, Y.A., and Srinivasan, M.M., “Tandem Configurations for AGV System offer Simplicity”, Industrial Engineering, Vol.21, No2, pp.23-27, 1989.
[4] Chung, S.H., and H.W. Huang, “The Block-Based Cycle Time Estimation Algorithm for Wafer Fabrication Factories,” International Journal of Industrial Engineering, pp. 307-316, 1999.
[5] Egbelu, P.J., and Tanchoco, J.M.A., “Characterization of Automated Guided, International Journal of Production Research, Vol.22, No.3, pp.359-374, 1984.
[6] Egbelu, P.J., “Pull Versus Strategy for Automated Guided Vehicle Load Movement in a Batch Manufacturing System”, Journal of Manufacturing System, Vol.6, No.3, pp.209-220, 1987.
[7] Egbelu, P.J., and Tanchoco, J.M.A., “Characterization of Automated Guided, International Journal of Production Research, Vol.22, No.3, pp.667-676, 1984.
[8] Fronckowiak, D., A. Peilert, K. Nishinohara, “Using Discrete Event Simulation to Analyze the Impact of Job Priorities on Cycle Time in Semiconductor Manufacturing,” 1996 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 151-155, 1996.
[9] Hillier, F.S., Lieberman, G. J., Introduction to operations research, Sixth edition, Mc Graw-Hill, Inc., 1995.
[10] Kramer, Scott S., “Total Cycle Time Management by Operational Element” International Semiconductor Manufacturing Science Symposium, pp.17-20, 1989.
[11] Lee, J., Tangjarukij, M., and Zhu, Z., “Load Selection of Automation Guided Vehicles in Flexible Manufacturing System”, International Journal of Production Research, Vol.34, No.12, pp.3388-3400, 1996.
[12] Lu, S.H., Ramaswamy, D., and Kumar, P. R., “Efficient Scheduling Policies to Reduce Mean and Variance of Cycle-time in Semiconductor Manufacturing Plants”, IEEE Transactions Semiconductor Manufacturing, Vol.7, pp.374-388, August 1994.
[13] Leung, L.C. “Determination of the Total Number of Vehicles in an AGV-based Material Transport System”, Material Flow, Vol.4, pp.33-51, 1982.
[14] Li, S., T. Tang, and D. W. Collins, “Minimum Inventory Variability Schedule With Application in Semiconductor Fabrication”, IEEE Transaction on Semiconductor Manufacturing, Vol. 9, No. 1, 1996.
[15] Mahadevan, B., and Narendran, T. T., “Design of Automated Guided Vehicle Based Material Handling System for a Flexible Manufacturing System”, International Journal of Production Research, Vol.28, No.9, pp.1611-1622, 1990.
[16] Maxwell, W.L., and Muckstadt., J.A., “Design of Automated Guided Vehicle System”, IIE Transaction, Vol.4, pp.33-51, 1987.
[17] Narahari, D.J., “Implementing The Results of A Simulation in a Semiconductor Line”, Processing of 1989 Winter Simulation Conference, pp.922-929, 1989.
[18] Peters, B.A., and Yang., “Integrated Facility Layout and Material Handling System Design in Semiconductor Fabrication Facilities”, IEEE Transaction on Semiconductor Manufacturing, Vol.10, No.3, pp.360-369, 1997.
[19] Pierce, N.G., and Stafford., “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp.900-906, 1994.
[20] Proth, J.M., and Vernadat, F., “COALA : A New Manufacturing Layout Approach”, 1993.
[21] Ozden, M.,” A Simulation Study of Multiple Load Carrying Automated Guided Vehicle in Flexible Manufacturing System”, International Journal of Production Research, Vol.26, No.8, pp.1356-1366, 1988.
[22] Ross, S., A First Course in Probability, Fifth edtion, Prentice Hall, 1998.
[23] Weiss, M., “Semiconductor Factory Automation”, Solid State Technology, Vol.39, No.1, pp.89-96, 1996.
[24] Weiss, M., “300mm Fab Automation Technology Option and Selection Criteria”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference Workshop, pp.373-379, 1997.
[25] Winston, Wayne L., Operations research: applications and algorithms, PWS-KENT publishing company, 1991.
[26] Sinriech, D., and Tanchoco, J.M.A., “An Economic Model for Determining AGV Fleet Size”, International Journal of Production Research, Vol.1, No.6, pp.1255-1268, 1992.
[27] Sinriech, D., and Tanchoco, J.M.A., and Herer, Y.T., “The Segmented bi-directional Single-loop Topology for Material System”, IIE Transaction, Vol.28, No.1, pp.40-54, 1996.
[28] Thompson, S.D. and W.J. Davis, “An integrated approach for modeling uncertainty in aggregate production planning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 5, pp. 1000-1012, 1990.
[29] Yim, D.S., and Linn, R.J., “Push and Pull Rules for Dispatching Automated Guided Vehicle in the Flexible Manufacturing System”, International Journal of Production Research, Vol.31, No.1, pp.43-57, 1993.
[30] 李國禎,「晶圓製造廠生產規劃模式之構建」,國立交通大學工業工程研究所碩士班,碩士論文,1995。
[31] 周上傑,「晶圓廠自動化物料搬運系統之派車模擬研究」,國立清華大學工業工程研究所碩士班,碩士論文,1999。
[32] 柯文清,「晶圓製造廠多工單等級下生產規劃模式之構建」,國立交通大學工業工程與管理學系碩士班,碩士論,2000。
[33] 陳志強,「多工單等級下晶圓製造廠生產週期時間估算式」,國立交通大學工業工程與管理學系碩士班,碩士論文,2000。
[34] 黃宏文,「晶圓製造廠之限制導向目標管理系統之構建」,國立交通大學工業工程與管理學系博士班,攻讀博士班研究計劃書,1997。
[35] 鄭照明,「晶圓製造廠交期指定模式之構建」,國立交通大學工業工程與管理學系碩士班,碩士論文,1998。
[36] 經濟部自動化與企業經營研討會,1998。
[37] JIS D 6801-1994無人搬送車システムの用語。
[38] 喜多島 淳二,畑 俊二,“無人搬送車と最近の応用”省力と自動化、1995年11号。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 呂昌明、李明憲、楊啟賢(1997):都市學童規律運動行為及其影響因素之研究。衛生教育論文集刊,10,53-61。
2. 高毓秀、黃奕清(2000):成年人運動行為影響因素之徑路分析。護理研究,8(4),433-445。
3. 洪百薰、林豐雄、洪美玟、黃明珠、吳聖良(1991):社區老人健康狀況與需求評估。公共衛生,18,212-235。
4. 姜逸群、呂槃、江永盛、黃雅文(1988):民眾的健康意識及中老年病之預防健康行為調查。衛生教育雜誌,9,67-81。
5. 尚憶薇(1999):適當運動對老年人身心健康之助益。大專體育,46,82-86。
6. 林麗娟(1993):運動與老化。中華體育,7(3),120-125。
7. 方進隆(1992):規律運動與健康促進和疾病預防。中華體育,5(4):1-7。
8. 方進隆(1991):老人的運動處方。健康教育,67,17-20。
9. 黃雅文、姜逸群、藍忠孚、方進隆、劉貴雲(1991);中老年人健康行為之探討。公共衛生,18(2),133-146。
10. 黃永任(1998):運動、體適能與疾病預防。國民體育季刊,27(2),5-13。
11. 劉淑娟(1998):臺灣社區老人的健康觀念與健康行為。護理雜誌,45(6),22-28。
12. 劉影梅、陳麗華、李媚媚、詹燕芳、陳俊忠(1998):活躍的銀髮族─社區老人健康體能促進方案的經驗與前瞻。護理雜誌,45(6),29-35。
13. 蔡櫻蘭(1997):高齡者之體力檢測及運動處方。臺灣省學校體育,7:6=42,60-65。