跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃玉齡
研究生(外文):Yu Ling Hwang
論文名稱:核苷酸酸酶和亞硫酸基轉移酵素之間的結構與序列關係
論文名稱(外文):The relationship of structures and sequences between nucleotide kinases and sulfotransferases
指導教授:黃鎮剛
指導教授(外文):Jenn Kang Hwang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:41
中文關鍵詞:核苷酸激酶亞硫酸基轉移酵素
外文關鍵詞:nucleotide kinasessulfotransferases
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文之研究動機,係來自於文獻中曾提到:亞硫酸基轉移酵素與核苷酸激酶在結構上非常相似,其方均根誤差值(rmsd)小於4Å。為了研究與釐清亞硫酸基轉移酵素與核苷酸激酶之間,結構與序列的關係,在本篇論文中,我們研究亞硫酸基轉移酵素與核苷酸激酶的序列相似度與結構相似度。首先,我們依據鹼基的不同,將核苷酸激酶分組成五組,即A、T、C、G、U五組,並將亞硫酸基轉移酵素歸類為額外一組;因此,總共有六組蛋白質。接著,我們分析這六組蛋白質在組內之序列相似度與方均根誤差值的關係,並比較20種胺基酸在各個蛋白質中所佔的比例。然後,以同樣的方法,分析亞硫酸基轉移酵素與各組核苷酸激酶之序列相似度與方均根誤差值的關係,及20種胺基酸佔有的比例。我們發現各組內的序列相似度皆大於25%,其方均根誤差值均小於4Å,至於亞硫酸基轉移酵素與各組核苷酸激酶的序列相似度,則均小於20%,其方均根誤差值在4 Å左右。由此可知,亞硫酸基轉移酵素與各組核苷酸激酶的序列與結構之間是沒有關係的。

This research is motivated by the statements in literature, that the structures of sulfotransferases and nucleotide kinases are very similar and their rmsds are less than 4Å.To study and clarify the relationships of the structure between sulfotransferases and nucleotide kinases, in this thesis, we analyze the relationshi of structures and sequences between nucleotide kinases and sulfotransferases. We first divided nucleotide kinases into 5 groups, A, T, C, G, U, according to their difference in nucleosides, and considered sulfotransferases as an additional one. Hence, there are totally 6 groups of proteins. We then analyzed sequence identities, calculated rmsds for proteins, and compared the percentage of each amino acid for the proteins of each group. We also applied the same scheme to obtain sequence identities and rmsds between sulfotransferases and each nucleotide kinase. Our results showed that all the proteins with in each group had sequence identities greater than 25%, and rmsds less than 4Å. However, between sulfotransferases and each group of nucleotide kinases, sequence identities are less than 20% and rmsds are roughly 4Å. Accordingly, there is no significant relationship in the sequences and structures between sulfotransferases and nucleotide kinases.

中文摘要 …………………………………………………………… i
英文摘要 ……………………………………………………………ii
誌謝 ………………………………………………………………iii
目錄 ………………………………………………………………iv
表目錄 ……………………………………………………………v
圖目錄 ……………………………………………………………vi
第一章 前言 ………………………………………………………1
第二章 方法 ………………………………………………………4
第三章 結果與討論 ………………………………………………9
參考文獻 ………………………………………………………………13

參考文獻
A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. 1995. Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536-540.
B.A. Rikke, and A. K. Roy. 1996. Structureal relationships among members of the mammalian sulfotransferase gene family. Biochimmica et Biophysica Acta 1307: 331-338.
C.A. Orengo, A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells, and J. M. Thornton. 1997. CATH - A Hierarchic Classification of Protein Domain Structures. Structure 5: 1093-1108.
C.W. Mueller, and G. E. Schulz. 1993. Crystal Structures of Two Mutants of Adenylate Kinase from Escherichia Coli Modify the Gly-Loop. Proteins: Struct.,Funct., Genet 15: 42-49.
C.W. Muller, G.J. Schlauderer, J. Reinstein, and G. E. Schulz. 1996. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4: 147-156.
C.W. Muller, and G. E. Schulz. 1988. Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor P1, P5-di (adenosine-5'-) pentaphosphate. J. Mol. Biol 202: 909-912.
D. Lipman, and W. R. Pearson. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci 85: 2444-2448.
E.S. Lin, and Y. S. Yang. 1998. Colorimetric determination of the purity of 3'-phospho adenosine 5'-phosphosulfate and natural abundance of 3'-phospho adenosine 5'-phosphate at picomole quantities. Analytical Biochemistry 264: 111-117; 2000. Nucleotide binding and sulfation catalyzed by phenol Sulfotransferase. Biochemical and Biophysical Research Communication. 271: 818-822.
E.V. Petrotchenko, L.C. Pedersen, C.H. Borchers, K.B. Tomer, and M. Negishi. 2001. The dimerization motif of cytosolic sulfotransferases. Febs Letters 490: 39-43.
G.J. Schlauderer, K. Proba, and G. E. Schulz. 1996. Structure of a Mutant Adenylate KInase Ligated with an ATP-analogue Showing Domain Closure Over ATP. J Mol Biol 256: 223-227.
H.M. Dieckmann, and G. E. Schulz. 1994. The structure of uridylate kinase with its substrates, showing the transition state geometry. J. Mol. Biol 236: 361-367.
Hadley, C., and D. T. Jones. 1999. A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. Structure 7: 1099-1112.
I.N. Shindyalov, and P. E. Bourne. 1998. Protein structure alignment by incremental combinatorial extension of the optimum path. Protein Engineering 11: 739-747.
J.L. Falany, and C. N. Falany. 1997. Regulation of estrogen activity by sulfation in human MCF-7 breast cancer cells. Oncol. Res. 9: 589-596.
K. Yoshimitsu, L.G. Pedersen, G.W. Carter, M. Negishi, and L. C. Pedersen. 1997. Crystal structure of estrogen sulphotransferase. Nature Structural Biology 4: 904-908.
L. Holm, and C. Sander. 1994. The FSSP database of structurally aligned protein fold families. Nucl Acids Res 22: 3600-3609.
Mathews, Van Holde, and Ahern, eds. 2000. Biochemistry. Addison Wesley Longman.
N. Masahiko, G. P. Lee, P. Evgeniy, S. Sergei, G. Anna, K. Yoshimitsu, and C. P. Lars. 2001. Structure and function of sulfotransferases. Archives of Biochemistry and Biophysics 390: 149-157.
O. Edgar, C.Y. Jiunn, D. Yili, H. Ole, C.P. Lars, N. Masahiko, and F. Minoru. 1999. Structure and function of HNK-1 sulfotransferase. J. Biolo. Chem 274: 25608-25612.
P. Spuergin, U. Abele, and G. E. Schulz. 1995. Stability, activity and structure of adenylate kinase mutants. Eur J Biochem 231: 405-413.
S. F. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. 1990. A basic local alignment search tool. J. Mol. Biol. 215: 403-410.
S. Hanks, and A. M. Quinn. 1991. Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Methods in Enzymology 200: 38-62.
T. Madej, J.F. Gibrat, and S. H. Bryant. 1995. Theading a database of protein cores. Proteins: Structure, Function, and Genetics. 23: 356-369.
T. Stechle, and G. E. Schulz. 1992. Refined structure of the complex between Guanylate kinase and its substrate GMP at 2.0 A Aresolution. J. Mol. Biol 224: 1127-1141.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文