跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林巧韻
研究生(外文):Chiao Yun Lin
論文名稱:克雷白氏肺炎桿菌抗碲基因tehB的功能研究
論文名稱(外文):Functional Characterization of the Tellurite Resistance Gene tehB of Klebsiella pneumoniae CG43
指導教授:彭慧玲彭慧玲引用關係
指導教授(外文):Hwei Ling Peng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:克雷白氏菌抗碲基因
外文關鍵詞:Klebsiella pneumoniaetehB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
克雷白氏肺炎桿菌是一種伺機性的病原菌,常引起免疫不全病人的菌血症及尿道感染。我們實驗室藉分析美國華盛頓大學於網站上所提供的克雷白氏肺炎桿菌MGH78578染色體核酸序列,發現一段可能與致病性相關的核酸片段;這段核酸片段包含一開讀骨架與Eikenella corrodens的紅血球凝集蛋白Hag1的胺基酸序列有47% 的一致性;而與大腸桿菌的抗碲基因tehB的胺基酸更有高達77% 的一致性。因此我們以聚合酉每連鎖反應由高致病性的克雷白氏肺炎桿菌CG43中選殖了抗碲基因,並將此開讀骨架命名為tehB。經由序列比對,大腸桿菌tehB和E. corrodens Hag1及克雷白氏肺炎桿菌tehB基因均具有三段決定硫-腺甘甲硫胺酸-非核甘酸類的甲基轉移酉每活性的保留胺基酸序列。
為了探討這段開讀骨架的生物活性,我們首先將tehB基因剪接到表現載體pET30c,再轉型入大腸桿菌Nova blue (DE3)以表現大量的蛋白質,我們嘗試過各種方法後仍然得到不溶性的蛋白,最後藉由尿素將此不溶性蛋白溶解,接著以His-tag親和管柱純化並經透析再折疊,最後得到了可溶性蛋白。除了證明此蛋白具甲基轉移酉每的活性外,我們還將此蛋白免疫小白鼠並成功的得到具專一性的多株抗體,進一步以西方墨點法分析發現TehB蛋白很可能位於克雷白氏肺炎桿菌的細胞膜上。同時,我們以小老鼠為實驗模型,結果發現此蛋白無法增進老鼠對抗克雷白氏肺炎桿菌的能力。最後,我們利用基因取代法經由同源互換建構了克雷白氏肺炎桿菌CG43S3 tehB突變株。結果除了tehB突變株CG43S3T1外,我們還得到一株菌落型態較不平滑的突變株CG43S3T2。進一步比較野生株與tehB突變株的紅血球凝集活性和抗碲活性,我們發現野生株與T1突變株對紅血球凝集的能力沒有差異,而T2突變株凝集效果明顯較佳。而野生株與突變株CG43S3T1在抗碲活性上和對BALB/C小鼠的毒性上都沒有明顯的差別。克雷白氏肺炎桿菌CG43帶有一約200 kb的毒性質體pLVPK,我們發現去除此質體的菌株KpCG43-101抗碲活性明顯下降,由目前已定序pLVPK完成的序列,發現有抗碲的基因組terZABCDEF坐落於上。因此,我們認為決定抗碲活性的主要因子位於pLVPK,而tehB基因可能間接參與抗碲的作用。

Klebsiella pneumoniae is an opportunistic pathogen that often causes septicemia and urinary tract infections in immunocompromised patients. According to the genome sequence of K. pneumoniae MGH78578 offered on the net, we have identified an ORF that may be involved in K. pneumoniae pathogenesis. The deduced amino acid sequence of the tehB showed a 47 % identity with the sequence of Eikenella corrodens hemagglutinin hag1 gene, and a 77 % identity with that of Escherichia coli tehB. We have isolated the tellurite resistance gene, namely tehB, from K. pneumoniae CG43 by PCR cloning and the sequence determined. The three conserved motifs identified in the AdoMet-dependent non-nucleic acid methytransferase family were also found in the TehB.
The tehB was subsequently subcloned into a pET expression vector and over expressed in E. coli. The over expressed protein, however, resulted mostly in an insoluble form. Denaturation using urea and refolding of the purified protein by His-tag affinity column significantly improved its solubility. The purified TehB was shown to carry an AdoMet-dependent methytransferase activity. A polyclonal antibody was generated by immunizing mouse with the purified protein and the specificity demonstrated. The TehB was detected in K. pneumoniae membrane fraction using the specific antibody. We went further using the purified TehB to immunize BALB/C mice for protection assay. Unfortunately, the TehB antibody did not protect the mice from K. pneumoniae infection. Finally, two morphologically different K. pneumoniae CG43S3 tehB deletion mutants CG43S3T1 and CG43S3T2 were obtained and the deletion demonstrated by southern analysis. There was no difference detected in hema -gglutination activity between the wild type strain and T1 mutant. The T2 mutant , however, showed an apparent hemagglutination activity. The tehB deletion appeared no major effect on the bacterial tellurite resistance or LD50 with a mouse peritonitis model. Curing of the large virulence-associated plasmid pLVPK was found to obviously increaseing of the tellurite susceptibility of K. pneumoniae CG43, indicating that the tellurite resistance factor is encoded by pLVPK. The finding of a tellurite resistance associated gene cluster terZABCDEF in the available contig sequence of pLVPK further supports the notion that the pLVPK carries the major determinant of tellurite resistance.

中文摘要----------------------------------------------------1
英文摘要----------------------------------------------------3
目錄--------------------------------------------------------5
表目錄------------------------------------------------------6
圖目錄------------------------------------------------------7
縮寫表------------------------------------------------------9
前言--------------------------------------------------------10
實驗材料及方法----------------------------------------------15
結果--------------------------------------------------------36
討論--------------------------------------------------------45
參考文獻----------------------------------------------------48
附錄一------------------------------------------------------53
附錄一------------------------------------------------------54
表 目 錄
表一、本實驗所用菌株基因型 55
表二、本實驗所用的質體建構表 56
表三、本實驗所使用到引子的序列 57
表四、克雷白氏肺炎桿菌的LD50測試 58
圖 目 錄
圖一、克雷白氏肺炎桿菌抗碲基因與Eikenella corrodens紅血
球凝集素胺基酸序列的比較圖 59
圖二、克雷白氏肺炎桿菌抗碲基因序列圖及引子相對位置 60
圖三、在大腸桿菌Nova-Blue (DE3)大量表現TehB電泳圖 61
圖四、TehB在低溫誘導下表現 62
圖五、以山梨醣醇和甜菜鹼誘導TehB表現 63
圖六、融合Thioredoxin TehB蛋白電泳圖 64
圖七、利用不同大腸桿菌宿主表現TehB之蛋白質電泳圖 65
圖八、TehB經6N尿素變性純化後的蛋白質電泳圖 66
圖九、在37℃培養下經純化濃縮方法的TehB及西方轉印免 67
疫呈色結果
圖十、TehB在克雷白氏肺炎桿菌的分佈位置 68
圖十一、TehB在克雷白氏肺炎桿菌野生株和突變株比較 69
圖十二、濃縮純化後TehB的甲基轉移酉每活性 70
圖十三、以聚合酉每連鎖反應和南方轉印法確認tehB的缺損 71
圖十四、克雷白氏肺炎桿菌CG43S3T1和T2菌落型態 72
圖十五:南方轉印分析確認tehB的缺損株位置 73
圖十六、全菌紅血球凝集測試 74
圖十七、tehB突變對克雷白氏肺炎桿菌抗碲活性的影響 75
圖十八、tehB基因表現對克雷白氏肺炎桿菌CG43-101抗碲能
力的影響 76
圖十九、tehB突變對克雷白氏肺炎桿菌抗硒活性的影響 77
圖二十、碲和硒的添加對克雷白氏肺炎桿菌生長的影響 78

賴怡琪,國立清華大學博士論文,中華民國九十一年,克雷白氏肺炎桿菌CG43致病基因相關的搜尋(RmpA2調控莢膜生合成的機轉)。
黃盈蓉,國立交通大學碩士論文,中華民國九十年,克雷白氏菌侵入細胞相關蛋白IalK的功能研究。
蔡易芊,國立交通大學碩士論文,中華民國八十九年,克雷白氏肺炎桿菌參與致病的基因─鑑定與特性分析。
鄧文玲,國立中興大學碩士論文,中華民國八十五年,菜豆細菌性斑點病病原菌致病基因群中兩個外膜蛋白(HrcJ和HrcC)的特性分析。
Arakawa, T. and S. N. Timasheff. 1985. The stabilization of proteins by Osmolytes. Biophys. J. 47:411-414.
Bessette P. H., F. Aslund, J. Beckwith, and G. Georgiou. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96(24):13703-8
Chang. H. Y., J. H. Lee, W. L. Deng, T. F. Fu, and H. L. Peng. 1996. Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb. pathog. 20:255-261.
Chang, A.C.Y. and S.N. Cohen. 1978. Construction and haracterization of amplifiable multicopy DNA cloning vehicles derived from the PI5A cryptic miniplasmid. J. Bacteriol. 134, 1141—1156.
Chiu. C. H., L. H. Su, T. L. Wu, and I. J. Hung. 2001. Liver abscess caused by Klebsiella pneumoniae in siblings. J. clin. microbiol. 39 (6): 2351-2353.
Darfeuille-Michaud. A., C. Jallat, D. Aubel, D. Sirot, C. Rich, J. Sirot, and B. Joly. 1992. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect. Immun. 60 (1): 44-55.
Dimartino, P., Y. Bertin, P. Girardeau, Y. Livrelli, B. Joly, and A. Darfeuile-Michaud. 1995. Molecular characterization and adhesive properties of CF29K, an adhesive of Klebsiella pneumoniae strains involved in nosocomial infection. Infect. Immun. 63 (11): 4336-4344.
Ebisu, S., and H. Okada. 1983. Agglutination of human erythrocytes by Eikenella corrodens. FEMS Micro. biol. Lett 18:153-156.
Fader, R. C., and A. E. Avots-Avotins, and C. P. Davis. 1979. Evidence for pili-mediated adherence of Klebsiella pneumoniae to rat bladder epithelial cells in vitro. Infect. Immun. 25 (2):729-737.
Griffith, E. 1991. Iron and bacterial virulence--a brief overview. Biol Met. 4:7-13
Guzzo, J., and M. S. Dubow. 2000. A novel selenite and tellurite-indurible gene in Escherichia coli. Appl. environ. microbiol. 66 (11). 4972-4978.
Hatfield, D. L., and V. N. Gladyshev. 2002. How selenium has altered our understanding of the genetic code. Mol. cell. biol. June. 3565-3576.
Lai, Y. C., S. L. Yang, H. L. Peng, and H. Y. Chang. 2000. Identification of genes present specifically in a virulent strain of Klebsiella pneumoniae. Infect. Immun. 68 (12): 7149-7151.
Liu, M., and D. E. Taylor. 1999. Characterization of gram-positive tellurite resistance encoded by the Streptococcus pneumoniae tehB gene. FEMS micro. biol. lett. 174:385-392.
Liu, M., R. J. Turner, T. L. Winstone, A. Saetre, M. Dyllick-Brenzinger, G. Jickling, L. W. Tari, J. H. Weiner, and D. E. Taylor. 2000. Escherichia coli tehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J. Bacteriol. 182 (22): 6509-6513.
Merino, S., S. Camprubi, S. Alberti, V. J. Benedi, and J. M. Tomas. 1992. Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect. Immun. 60: 2529-35.
Podschun, R., and U. Ullmann, 1998. Klebsiella spp. as nosocomial pathogens:epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11:589-603.
Rao, V. K., J. A. Whitlock, and A. Progulske-Fox. 1993. Cloning, characterization and sequencing of two haemagglutinin genes from Eikenella corrodens. J. Gen. Microbiol. 139,:639-650.
Sahly, H., R. Podschun, T. A. Oelschlaeger, M. Greiwe, H. Parolis, D. Hasty, J. Kekow, U. Ullmann, I. Ofek, and S. Sela. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect. Immun. 68 (12): 6744-6749.
Sambrook, J., R. F. Fritsch., and R. Maniatis. 2001. Molecular cloning, Third edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
Schnaitman, C. A. 1971. Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J. Bacteriol. 108:545-552.
Simon, R., M, O’Connel, M. Labes, and A. Puhler. 1986. Plasmid vectors for the genetic analysis and manipulation of Rhizobia and other gram-negative bacteria. Methods Enzymol. 118: 640-659.
Southern, E. M. 1975. Detection of specific sequences among DNA feagments separated by gel electrophoresis. J. Mol. Bio. 98:503-517.
Southern, K., and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene. 169:47-52.
Taylor, R. K., C. Manoil, and J. J. Mekalanons. 1989. Broad-host-range vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J. Biol. 171:1870-1878.
Taylor, D. E., 1999. Bacterial tellurite resistance. Trends in microbiology 7 (3):111-115.
Taylor, D. E., E. G. Walter, R. Sherburne, and D. P. Bazett-Jones. 1988. Structure and Location of tellurium deposited in Escherichia coli cells harboring tellurite resistance plasmids. J. ultrastruct. mol. struct. res. 99:18-26.
Tomas, J. M., and W. W. Kay. 1986. Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob. agents chemother.30 (1): 127-131.
Turner, R. J., D. E. Taylor, and J. H. Weiner. 1997. Expression of Escherichia col TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob. agents chemother.41 (2): 440-444.
Turner, R. J., J. H. Weiner, and D. E. Taylor. 1995. Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can. J. Microbiol 41:92-98.
Walter, E. G., and D. E. Taylor. 1992. Plasmid-mediated resistance to tellurite :expression and cryptic. Plasmid. 27:52-64.
Weinshilboum, R. M., F. A. Raymond, and P. A. Pazmino. 1978. Human erythrocyte thiopurine methyltransferase radiochemical microassay and biochemical properties. Clin. chim. acta. 85:323-333.
Whelan, F. K., E. Colleran, and D. E. Taylor. 1995. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 R478. J. Bacteriol. 177: 5016-5027.
Yamazaki, Y., S. ebisu, and H. Okada. 1988. Partial purification of a bacterial lectinlike substrance from Eikenella corrodens. Infect. Immun 56 (1): 191-196.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top