|
[1] Akimoto, K., Shinmen, Y., Sumida, M., Asami, S., Amachi, T., Yoshizumi, H., Saeki, Y., Shimizu, S., and Yamada, H. Luminol Chemiluminescence Reaction Catalyzed by a Microbial Peroxidase. Analysis Biochemistry 189, 182-185,1990. [2] Aygün, O., Schneider, E., Scheuer, R., Usleber, E., Gareis, M., and Märtlbauer, E. Comparison of ELISA and HPLC for the Determination of Histamine in Cheese. Journal of Agriculture Food Chemistry 47, 1961-1964. ,1999. [3] Bracing, C. E., Smoot, J. C., Findlay, R. H. and Actis, L. A. Plasmid-Mediated Histamine Biosynthesis in the Bacterial Fish Pathogen Vibrio anguillarum. Plasmid 39, 235-244,1998. [4] Berry M. D., Juorio A. V., and Paterson I. A. The function role of monoamine oxidase —A and —B in the mammalian central nervous system. Progress in Neurobiology 42, 375-391, 1994. [5] Blum, L. J. Chemiluminescence Flow Injection Analysis of Glucose in Drinks with a Bienzyme Fiberoptic Biosensor. Enzyme Microbiological Technology 15, 407-411,1993. [6] Canizares F., Salinas J., de las Heras M., Diaz J., Tovar I., Martinez P., Penafiel R. Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clinical Cancer Research 5, 2035-2041., 1999. [7] Choi, Y. H., Matsuzaki, R., Fukui, T., Shimizu,E., Yorifuji, T., Sato,H., Ozaki, Y. and Katsuyuki Tanizawa. Cooper/Topa Quinone-containing Histamine Oxidase from Arthrobacter globiformis. The Journal of Biological Chemistry 270, 4712-4720,1995. [8] Choi, Y. H., Matsuzaki, R., Suzuki, S. and Tanizawa, K. Role of Conserved Asn-Tyr-Asp-Tyr Sequence in Bacterial Copper/ 2,4,5- Trihydroxy- phenylalanyl Quinone-containing Histamine Oxidase. The Journal of Biological Chemistry 271, 22598-22603, 1996. [9] Conyers, S. M. and Kidwell, D. A. Chromogenic Substrate for Horseradish Peroxidase. Analytical Biochemistry 192, 207-211, 1991. [10] Cooper, R. A., Knowles, P. F., Brown, D. E., Mcgulrl, M. A. and Dooley D.M.. Evidence for cooper and 3,4,6-TPQ cofacters in an amine oxidase from the Gram-negative bacterium Escherichia coli K-12. Biochemical Journal 288,337-340., 1992. [11] Draisci, R., Giannetti, L., Boria, P., Lucentini, L., Palleschi, L. and Cavalli, S.. Improved Ion Chematography-interated Pulsed Amperometric Detection Method for the evaluation of biogenic Amines in Food of Vegetable or Animal Origin and in Fermented Foods. Journal of Chromatography A 798, 109-116, 1998. [12] Federico, R., Angelini, R., Ercolini, L., Venturini, G., Mattevi, A. and Ascenzi, Paolo. Competitive Inhibition of Swine Kiney Copper Amine Oxidase by Drugs: Amiloride, Clonidine, and Gabexate Mesylate. Biochemical and Biophysical Research Communications 240, 150-152, 1997. [13] Freeman, T. M. and Seitz, W. R.. Chemiluminescence Fiber Optic probe for Hydrogen Peroxide Based on the Luminol Reaction. Analysis Chemistry 50, 1242-1246, 1978. [14] Fernandez C., Sharrard R.M., Talbot M., Reed B.D., Monks N. Evaluation of the significance of polyamines and their oxidases in the aetiology of human cervical carcinoma. British Journal of Cancer 72(5), 1194-1199, 1995. [15] Glória, M. B. A. and Izquierdo-Pulido, M. Levels and Significance of Biogenic Amines in Brazilian Beers. Journal of Food Composition and Analysis 12, 129-136, 1999. [16] Göpel, W. and Heiduschka, P. Interface Analysis in Biosensor Design. Biosensor and Bioelectronics 10, 853-883, 1995. [17] Ha, H. C., Woster, P. M., Yager, J. D. and Casero, R. A.. The Role of Polyamine Catabolism in Polyamine Analogue-Induced Programmed Cell Death. Proceedings of the National Academy of Sciences 94, 11557-11562, 1997. [18] Hevel, J. M., Mills , S. A., and Klinman J. P.. Mutation of a Strictly Conserved, Active- Site Residue Alters Substrate Specificity and Cofactor Biogenesis in a Copper Amine Oxidase. Biochemistry 38, 3683-3693, 1999. [19] Holgate, S.T.. The Role of Mast Cells and Basophils in Inflammation. Clinical and Experimental Allergy 30, 28-32, 2000. [20] Janes, S. M., Palcic, M. M., Scaman, C. H., Smith, A. J., Brown, D. E., Dooley, D. M., Mure, M. and Klinman, J. P.. Identification of Topaquinone and Its Consensus Sequence in Copper Amine Oxidases. Biochemistry 31, 12147-12154, 1992. [21] Kjelke, M., Andersen, M. B., Scjneider, P., Christensen, B., Schülein, M. and Welinder, K. G.. Comparison of Structure and Activities of Peroxidase from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochemica et Biophysica Acta. 1120, 248-256, 1992. [22] Knoll, J.. (-)Deprenyl(Selegiline), a catecholaminergic activity enhancer (CAE) substance acting in the brain. Pharmacol. Toxicol. 82, 57-66, 1998. [23] Klinman, J.P. and Mu, D.. Quinoenzymes in biology. Annual Review Biochemistry 63, 299—344, 1994. [24] Kumar, V., Dooley D. M., Freeman H.C., Guss J.M., Harvey, I., McGuirl, M. A., Wilce, M.C.J. and ZuBak V. M. Structure 4, 943-955, 1996. [25] Loughran, M. G., Hall, J. M., Turner, A. P. F. and Davidson, V. L. Amperometric Detection of histamine at a Quinoprotein Dehydrogenase Enzyme Electrode. Biosensors and Bioelectronics 10, 569-576, 1995. [26] Mclntire W. S. and Hartmann C. Copper-containing amine oxidases. Principles and Applications of Quinoproteins 97-171, 1993. [27] Nothen, M. M., Erdmann, J., Shimronabarbanell, D. and Propping, P. Identification of Genetic Variation in the Human Serotonin 1D Receptor Gene. Biochemical and Biophysical Research Communications 205, 1194-1200, 1994. [28] Ortiz, J., Gómez, J., Torrent, A., Aldavert, M. and Blanco, I. Quantitative Radioisotopic Determination of Histidine Decarboxylase using High-Performance Liquid Chromatography. Analytical Biochemistry 280, 111-117, 2000. [29] Paz, M. P., Fluckiger, R., Boak, A., Kagan, H. M. and Gallop, P. M.. Specific Detection of Quinoproteins by Redox-cycling Staining. The Journal of Biological Chemistry 266, 689-692., 1991. [30] Parsons, M.R., Convery, M. A., Wilmot, C. M., Yadav, K. D. S., Blakeley, V., Corner, A. S., Phillips, S. E. V., Mcpherson, M. J. and Knowles, P. F.. Crystal Structure of a Quinoenzyme: Copper Amine Oxidase of Escherichia coli at 2 Å Resolution. Structure 3, 1171-1184, 1995. [31] Plastino, J., Green, E. L., Sanders-Loehr, J., and Klinman J. P.. An Unexpected Role for the Active Site Base in Cofactor Orientation and Flexibility in the Copper Amine Oxidase from Hansenula polymorpha. Biochemistry 38, 8204-8216, 1999. [32] Schmidt, T. G. M. and Skerra, A.. Use of the Strep-Tag and Streptavidin for Detection and Purification of Recombinant Protein. Protein Engineering 6(109),271-305, 1993. [33] Schwartz, B., Green, E. L., Sanders-Loehr, J., and Klinman, J. P.. Relationship between Conserved Consensus Site Residues and the Productive Conformation for the TPQ Cofactor in a Copper-Containing Amine Oxidase from Yeast.. Biochemistry 37, 16591-16600, 1998. [34] Shalaby, A. R.. Significance of Biogenic Amines to Food Safety and Human Health. Food Research international 29, 675-690, 1996. [35] Stryer, D.B. and Bero L.A. Drug promotion. The New England Journal of Medicine. 332(15), 1032, 1995. [36] Szutowicz, A.,Kobes, R. D., and Orsulak, P. J.. Colorimetric Assay for Monoamine Oxidase in Tissues Using Peroxidase and 2,2’-Azinodi (3- ethylbenzthiazoline -6-sulfonic Acid) as Chromogen. Analytical Biochemistry 138, 86-94, 1984. [37] Tanaka, M., Ishimori, K. and Morishima, I.. Luminol Activity of Horseradish Peroxidase Mutants Mimicking a Proposed Binding Site for Luminol in Arthromyces ramosus Peroxidase. Biochemistry 38, 10463-10473, 1999. [38] Tanizawa, K., Matsuzaki, R., Shimizu,E., Yorifuji, T. and Fukui, T.. Cloning and Sequence of Phenylethylamine Oxidase from Arthrobacter globiformis and Implication of Tyr-382 as the Precursor to its Covalently Bound Quinone Cofactor. Biochemical and Biophysical Research Communications 199, 1096-1102, 1994. [39] Wilce, M. C. J., Dooley, D. M., Freeman, H. C., Guss, J. M., Matsunami, H., McIntire, W. S., Ruggiero, C. E., Tanizawa, K. and Hiroshi Yamaguchi, H.. Crystal Structures of the Copper- Containing Amine Oxidase from Arthrobacter globiformis in the Holo and Apo Forms: Implications of the Biogenesis of Topaquinone. Biochemistry 36, 16116-16133, 1997. [40] Wilmot, C. M., Murray, J. M., Alton, G., Parsons, M. R., Convery, M. A., Blakeley,, V., Corner, A. S., Palcic, M. M., Knowles, P. F., McPherson, M. J., and Phillips, S. E. V.. Catalytic Mechanism of the Quinoenzyme Amine Oxidase from Escherichia coli: Exploring the Reductive Half-Reaction. Biochemistry 36, 1608-1620, 1997.
|